This data is used to as an easy example to understand the purpose of ClusterSignificance. It is set up so that the results can easily be anticipated before ClusterSignificance is run. The permutation results are currently saved in the package (to save time) but, if you desire to re-run the analysis you can follow the typical ClusterSignificance pipeline using the pcpMatrix dataset in the ClusterSignificance package.
library(ClusterSignificanceExtras) #load data mat <- pcpMatrix groups <- rownames(pcpMatrix) #run ClusterSignificance projection and change colors prj <- pcp(mat, groups) group.color <- getData(prj, "group.color") group.color[1,] <- c(68, 221, 136) group.color[2,] <- c(170, 204, 34) group.color[3,] <- c(153, 119, 85) prj@group.color <- group.color #run CLusterSignificance classification cl <- classify(prj) #run ClusterSignificance permutation set.seed(3) #pe <- permute(mat, groups, "pcp", 10000) pe <- pcpPermutations
plot(prj, steps=3, alpha=0.75, cex.lab = 2, cex.axis = 2, cex.symbols = 3, cex.legend=2, pt.cex.legend=3)
plot(cl, cex.points=3, cex.main=2, cex.lab=2, cex.axis=2)
plot(pe, cex.main=2, cex.lab=1.5, cex.axis=2, abline.lwd=1.5)
pvalue(pe)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.