featureMotifs | R Documentation |
Basically a wrapper for computeMotifs
function.
This function can count the motifs of RNA and protein sequences at the same time
and format the results as the dataset that can be used to build classifier.
featureMotifs(
seqRNA,
seqPro,
label = NULL,
featureMode = c("concatenate", "combine"),
newMotif.RNA = NULL,
newMotif.Pro = NULL,
newMotifOnly.RNA = FALSE,
newMotifOnly.Pro = FALSE,
parallel.cores = 2,
cl = NULL,
...
)
seqRNA |
RNA sequences loaded by function |
seqPro |
protein sequences loaded by function |
label |
optional. A string or a vector of strings or |
featureMode |
a string that can be |
newMotif.RNA |
a list specifying the motifs that are counted in RNA sequences. Default: |
newMotif.Pro |
a list specifying the motifs that are counted in protein sequences. Default: |
newMotifOnly.RNA |
logical. If |
newMotifOnly.Pro |
logical. If |
parallel.cores |
an integer that indicates the number of cores for parallel computation. Default: |
cl |
parallel cores to be passed to this function. |
... |
argument |
If featureMode = "concatenate"
, m RNA motif features will be simply
concatenated with n protein motif features, and the final result has m + n features.
If featureMode = "combine"
, m RNA motif features will be
combined with n protein motif features, resulting in m * n possible combinations.
...
can be used to pass the default motif patterns of RNA and protein sequences.
See arguments motifRNA
and motifPro
in computeMotifs
.
This function returns a data frame. Row names are the sequences names, and column names are the motif names.
The names of RNA and protein sequences are separated with ".",
i.e. row names format: "RNASequenceName.proteinSequenceName" (e.g. "YDL227C.YOR198C").
If featureMode = "combine"
, the motif names of RNA and protein sequences are also separated with ".",
i.e. column names format: "motif_RNAMotifName.motif_proteinMotifName" (e.g. "motif_PUM.motif_EE").
[1] Han S, Yang X, Sun H, et al. LION: an integrated R package for effective prediction of ncRNA–protein interaction. Briefings in Bioinformatics. 2022; 23(6):bbac420
[2] Akbaripour-Elahabad M, Zahiri J, Rafeh R, et al. rpiCOOL: A tool for In Silico RNA-protein interaction detection using random forest. J. Theor. Biol. 2016; 402:1-8
[3] Pancaldi V, Bahler J. In silico characterization and prediction of global protein-mRNA interactions in yeast. Nucleic Acids Res. 2011; 39:5826-36
[4] Castello A, Fischer B, Eichelbaum K, et al. Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins. Cell 2012; 149:1393-1406
[5] Ray D, Kazan H, Cook KB, et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 2013; 499:172-177
[6] Jiang P, Singh M, Coller HA. Computational assessment of the cooperativity between RNA binding proteins and MicroRNAs in Transcript Decay. PLoS Comput. Biol. 2013; 9:e1003075
computeMotifs
data(demoPositiveSeq)
seqsRNA <- demoPositiveSeq$RNA.positive
seqsPro <- demoPositiveSeq$Pro.positive
dataset1 <- featureMotifs(seqRNA = seqsRNA, seqPro = seqsPro, featureMode = "conc",
newMotif.RNA = list(motif1 = c("cc", "cu")),
newMotif.Pro = list(motif2 = "KK"),
motifRNA = c("Fusip1", "AU", "UG"),
motifPro = c("E", "K", "HR_RH"))
dataset2 <- featureMotifs(seqRNA = seqsRNA, seqPro = seqsPro, featureMode = "comb",
newMotif.RNA = list(motif1 = c("cc", "cu")),
newMotif.Pro = list(motif2 = c("R", "H")),
newMotifOnly.RNA = TRUE, newMotifOnly.Pro = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.