View source: R/PhysicochemicalProperty.R
featurePhysChem | R Documentation |
Basically a wrapper for computePhysChem
function.
This function can extract physicochemical features of RNA and protein sequences at the same time
and format the results as the dataset that can be used to build classifier.
featurePhysChem(
seqRNA,
seqPro,
label = NULL,
parallel.cores = 2,
cl = NULL,
...
)
seqRNA |
RNA sequences loaded by function |
seqPro |
protein sequences loaded by function |
label |
optional. A string or a vector of strings or |
parallel.cores |
an integer that indicates the number of cores for parallel computation.
Default: |
cl |
parallel cores to be passed to this function. |
... |
arguments ( |
see computePhysChem
.
This function returns a data frame.
[1] Han S, Yang X, Sun H, et al. LION: an integrated R package for effective prediction of ncRNA–protein interaction. Briefings in Bioinformatics. 2022; 23(6):bbac420
[2] Morozova N, Allers J, Myers J, et al. Protein-RNA interactions: exploring binding patterns with a three-dimensional superposition analysis of high resolution structures. Bioinformatics 2006; 22:2746-52
[3] Grantham R. Amino acid difference formula to help explain protein evolution. Science 1974; 185:862-4
[4] Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences in proteins by statistical methods. J. Theor. Biol. 1968; 21:170-201
[5] Bull HB, Breese K. Surface tension of amino acid solutions: a hydrophobicity scale of the amino acid residues. Arch. Biochem. Biophys. 1974; 161:665-670
[6] Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982; 157:105-132
[7] Eisenberg D, Schwarz E, Komaromy M, et al. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 1984; 179:125-42
[8] Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. U. S. A. 1981; 78:3824-8
[9] Kawashima S, Kanehisa M. AAindex: amino acid index database. Nucleic Acids Res. 2000; 28:374
[10] Bellucci M, Agostini F, Masin M, et al. Predicting protein associations with long noncoding RNAs. Nat. Methods 2011; 8:444-445
[11] Lu Q, Ren S, Lu M, et al. Computational prediction of associations between long non-coding RNAs and proteins. BMC Genomics 2013; 14:651
computePhysChem
data(demoPositiveSeq)
seqsRNA <- demoPositiveSeq$RNA.positive
seqsPro <- demoPositiveSeq$Pro.positive
# Pass "Fourier.len", "physchemRNA" and "physchemPro" using "..." argument:
dataset1 <- featurePhysChem(seqRNA = seqsRNA, seqPro = seqsPro,
label = "Interact", Fourier.len = 10,
physchemRNA = c("hydrogenBonding", "vanderWaal"),
physchemPro = c("polarity.Grantham", "polarity.Zimmerman",
"hphob.BullBreese", "hphob.KyteDoolittle",
"hphob.Eisenberg", "hphob.HoppWoods"))
# Using the default setting:
dataset2 <- featurePhysChem(seqRNA = seqsRNA, seqPro = seqsPro)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.