Description Usage Arguments Details Value Author(s) References Examples
Classification using the B-cell associated gene signatures (BAGS) classifier of Dybkaer et al. [1] adjusted for nanostring data by Michaelsen et al. [2]. The BAGS classifier attemps to assign the given supplied Diffuse Large B-Cell Lymphomas (DLBCL) samples to one of four classes according to their resembalace to normal Centrocytes (CC), Centroblasts (CB), Memory (M), and Plasmablasts (PB) cells.
1 | BAGS2Clinic(new.data, cut.spec = NULL, percent.classified = 85)
|
new.data |
An expression |
cut.spec |
A |
percent.classified |
A |
The function BAGS2Clinic classifies DLBCL patients according to the cell of origin for the tumor [1,2].
A list
of probabilities regarding each patients association
with each class, the determined class, and the used cut-off thresholds.
Thomas Yssing Michaelsen <tym (at) bio.aau.dk>
Rasmus Broendum <rfb (at) rn.dk>
[1] Dybkaer, Karen, Martin Boegsted, Steffen Falgreen, Julie S. Boedker, Malene K. Kjeldsen, Alexander Schmitz, Anders E. Bilgrau et al. "Diffuse large B-cell lymphoma classification system that associates normal B-cell subset phenotypes with prognosis." Journal of Clinical Oncology 33, no. 12 (2015): 1379-1388.
[2] Michaelsen, T. Y. et al. "A B-cell-associated gene signature classification of diffuse large B-cell lymphoma by NanoString technology." Blood advances, 2(13) (2018): 1542-1546.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | # Nanostring files may be read and normalized using the NanoStringNorm package
library(NanoStringNorm)
data.nano.raw <- read.markup.RCC("path to files")
data.nano.norm <- NanoStringNorm(data.nano.raw,
Background = "mean",
CodeCount = "sum",
return.matrix.of.endogenous.probes = FALSE)
# Data should be log2 transformed and scaled
data.nano.sc <- microarrayScale(log2(as.matrix(data.nano.norm$normalized.data[,-c(1,2,3)]) + 1))
# We may now use the BAGS classifier
BAGS2Clinic(data.nano.sc)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.