View source: R/sample_params.r
sample_parameters | R Documentation |
Generates the random samples of all the stochastic CRM parameters. For internal use.
sample_parameters( model_options, mod_mths, n_iter = 10, flt_speed_pars, body_lt_pars, wing_span_pars, avoid_bsc_pars, avoid_ext_pars, noct_act_pars, prop_crh_pars, bird_dens_opt = "tnorm", bird_dens_dt, gen_fhd_boots = NULL, site_fhd_boots = NULL, rtr_radius_pars, air_gap_pars, bld_width_pars, rtn_pitch_opt = "probDist", bld_pitch_pars, rtn_speed_pars, windspd_pars, rtn_pitch_windspd_dt, trb_wind_avbl, trb_downtime_pars, lrg_arr_corr )
model_options |
Character vector, the model options for calculating collision risk (see Details section below). |
mod_mths |
character vector, the names of months under modelling |
n_iter |
An integer. The number of iterations for the model simulation. |
flt_speed_pars |
A single row data frame with columns |
body_lt_pars |
A single row data frame with columns |
wing_span_pars |
A single row data frame with columns |
avoid_bsc_pars, avoid_ext_pars |
Single row data frames with columns
|
noct_act_pars |
A single row data frame with columns |
prop_crh_pars |
Required only for model Option 1, a single row data
frame with columns |
bird_dens_opt |
Option for specifying the random sampling mechanism for bird densities:
|
bird_dens_dt |
A data frame with monthly estimates of bird density within the windfarm footprint, expressed as the number of daytime in-flight birds/km^2 per month. Data frame format requirements:
|
gen_fhd_boots |
Required only for model Options 2 and 3, a data frame
with bootstrap samples of flight height distributions (FHD) of the species
derived from general (country/regional level) data. FHD provides relative
frequency distribution of bird flights at 1-+
-metre height bands, starting
from sea surface. The first column must be named as NOTE: generic_fhd_bootstraps is a list object with generic FHD bootstrap estimates for 25 seabird species from Johnson et al (2014) doi: 10.1111/1365-2664.12191 (see usage in Example Section below). |
site_fhd_boots |
Required only for model Option 4, a data frame similar
to |
rtr_radius_pars |
A single row data frame with columns |
air_gap_pars |
A single row data frame with columns |
bld_width_pars |
A single row data frame with columns |
rtn_pitch_opt |
a character string, the option for specifying the sampling mechanism for rotation speed and blade pitch:
|
bld_pitch_pars |
Only required if |
rtn_speed_pars |
Only required if |
windspd_pars |
Only required if |
rtn_pitch_windspd_dt |
Only required if
|
trb_wind_avbl |
A data frame with the monthly estimates of operational wind availability. It must contain the columns:
|
trb_downtime_pars |
A data frame with monthly estimates of maintenance downtime, assumed to follow a tnorm-lw0 distribution. It must contain the following columns:
|
lrg_arr_corr |
Boolean value. If TRUE, the large array correction will be applied. This is a correction factor to account for the decay in bird density at later rows in wind farms with a large array of turbines. |
Collision risk can be calculated under 4 options, specified by model_options
:
Option 1 - Basic model with proportion at
collision risk height derived from site survey (prop_crh_surv
).
Option 2 - Basic model with proportion
at collision risk height derived from a generic flight height distribution
(gen_fhd
).
Option 3 - Extended model using a
generic flight height distribution (gen_fhd
).
Option 4 - Extended model using a
site-specific flight height distribution (site_fhd
).
Where,
Basic model - assumes a uniform distribution of bird flights at collision risk height (i.e. above the minimum and below the maximum height of the rotor blade).
Extended model - takes into account the distribution of bird flight heights at collision risk height.
A list object with each element comprising sampled values of given CRM parameter
bird_dens_dt <- data.frame( month = month.abb, mean = runif(12, 0.8, 1.5), sd = runif(12, 0.2, 0.3) ) # wind availability trb_wind_avbl <- data.frame( month = month.abb, pctg = runif(12, 85, 98) ) # maintenance downtime trb_downtime_pars <- data.frame( month = month.abb, mean = runif(12, 6, 10), sd = rep(2, 12)) # Wind speed relationships wind_rtn_ptch <- data.frame( wind_speed = seq_len(30), rtn_speed = 10/(30:1), bld_pitch = c(rep(90, 4), rep(0, 8), 5:22) ) bird_dens_opt <- "tnorm" ### extract and standardize month format from monthly data sets b_dens_mth <- switch (bird_dens_opt, tnorm = bird_dens_dt$month, resample = names(bird_dens_dt), qtiles = names(bird_dens_dt)[names(bird_dens_dt) != "p"] ) %>% format_months() dwntm_mth <- format_months(trb_downtime_pars$month) windav_mth <- format_months(trb_wind_avbl$month) ### Set months to model: only those in common amongst monthly data sets mod_mths <- Reduce(intersect, list(b_dens_mth, dwntm_mth, windav_mth)) ### Order chronologically mod_mths <- mod_mths[order(match(mod_mths, month.abb))] param_draws <- sample_parameters( model_options = c(1,2,3), n_iter = 10, mod_mths = mod_mths, flt_speed_pars = data.frame(mean=7.26,sd=1.5), body_lt_pars = data.frame(mean=0.39,sd=0.005), wing_span_pars = data.frame(mean=1.08,sd=0.04), avoid_bsc_pars = data.frame(mean=0.99,sd=0.001), avoid_ext_pars = data.frame(mean=0.96,sd=0.002), noct_act_pars = data.frame(mean=0.033,sd=0.005), prop_crh_pars = data.frame(mean=0.06,sd=0.009), bird_dens_opt = "tnorm", bird_dens_dt = bird_dens_dt, gen_fhd_boots = generic_fhd_bootstraps[[1]], site_fhd_boots = NULL, rtr_radius_pars = data.frame(mean=80,sd=0), air_gap_pars = data.frame(mean=36,sd=0), bld_width_pars = data.frame(mean=8,sd=0), rtn_pitch_opt = "windSpeedReltn", bld_pitch_pars = NULL, rtn_speed_pars = NULL, windspd_pars = data.frame(mean=7.74,sd=3), rtn_pitch_windspd_dt = wind_rtn_ptch, trb_wind_avbl = trb_wind_avbl, trb_downtime_pars = trb_downtime_pars, lrg_arr_corr = TRUE )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.