View source: R/falsediscoveryrate.R
| falsediscoveryrate | R Documentation |
This function calculates the false discovery rate (proportion of linked pairs that are false positives) in a sample given the sensitivity
\eta
and specificity \chi of the linkage criteria, and sample size M. Assumptions about transmission and linkage (single or multiple)
can be specified.
falsediscoveryrate(eta, chi, rho, M, R = NULL, assumption = "mtml")
eta |
scalar or vector giving the sensitivity of the linkage criteria |
chi |
scalar or vector giving the specificity of the linkage criteria |
rho |
scalar or vector giving the proportion of the final outbreak size that is sampled |
M |
scalar or vector giving the number of cases sampled |
R |
scalar or vector giving the effective reproductive number of the pathogen (default=NULL) |
assumption |
a character vector indicating which assumptions about transmission and linkage criteria. Default =
|
scalar or vector giving the true discovery rate
John Giles, Shirlee Wohl, and Justin Lessler
Other discovery_rate:
truediscoveryrate()
# The simplest case: single-transmission, single-linkage, and perfect sensitivity
falsediscoveryrate(eta=1, chi=0.9, rho=0.5, M=100, assumption='stsl')
# Multiple-transmission and imperfect sensitivity
falsediscoveryrate(eta=0.99, chi=0.9, rho=1, M=50, R=1, assumption='mtsl')
# Small outbreak, larger sampling proportion
falsediscoveryrate(eta=0.99, chi=0.95, rho=1, M=50, R=1, assumption='mtml')
# Large outbreak, small sampling proportion
falsediscoveryrate(eta=0.99, chi=0.95, rho=0.5, M=1000, R=1, assumption='mtml')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.