inst/dummy_project/0102-growth-functional.R

#' ---
#' title: "Simple growth difference equation model"
#' author: "Richard Reeve"
#' date: '`r format(Sys.Date(), "%B %d %Y")`'
#' output: html_document
#' ---

#'
#' First define the function that does the work.
#'
#' A simple deterministic exponential growth model
#'
#' Run one step of a simple deterministic exponential growth model
#'
#' Arguments:
#'
#' - current.population -- the population count now
#'
#' - growth.rate -- the growth rate
#'
#' Returns:
#'
#' - the updated population count
#'
step_simple_growth <- function(current.population, growth.rate) {

  # Calculate changes to population
  new.additions <- growth.rate * current.population

  # Calculate population at next timestep
  next.population <- current.population + new.additions

  # Return updated population
  next.population
}

#' ### Now check the function works without any extra information
library(codetools)
findGlobals(step_simple_growth, merge = FALSE)

#' ### Now set up the simulation parameters
#' First we set up the parameters for the simulation.

# Set the growth rate for this specific problem
human.annual.growth <- 0.015

# Starting population size
initial.human.population <- 7 * 10 ^ 9

# And setting times
start.time <- 0
end.time <- 100

#' ### Run the simplest possible simulation
#' Then we run it so that we can get the output we need.

# Set up the population starting size (at the first timestep)
human.population.vector <- c(initial.human.population)

# the timesteps that the simulation will run through
timesteps <- seq(from = start.time + 1, to = end.time)

# Now we loop through the time itself (starting at the second timestep)
for (new.time in timesteps) {
  updated.human.population <-
    step_simple_growth(current.population = tail(human.population.vector, 1),
                       growth.rate = human.annual.growth)
  human.population.vector <- append(human.population.vector,
                                    updated.human.population)
}

#' ### And plot the results
#' And finally we output the results.
plot(append(start.time, timesteps), human.population.vector, type = "l")
abline(h = initial.human.population * 2, lty = 2, col = 2)
abline(v = 46.6, lty = 2, col = 2)
abline(h = initial.human.population * 4, lty = 2, col = 3)
abline(v = 46.6 * 2, lty = 2, col = 3)
#' Note the dashed lines show doubling of the population every 46.6 years.
IBAHCM/RPiR documentation built on Jan. 12, 2023, 7:41 p.m.