install.packages("devtools"); library(devtools)
install_github("IBM/spbfs"); library('spbfs')
#Pre-requirment libraries
#Importing an example database, "The Pima Indians Diabetes". Specifying an initial set of features and an outcome.
{
library(mlbench)
data(PimaIndiansDiabetes)
DATA_FRAME <- PimaIndiansDiabetes
FEATURE_NAMES = c('pregnant', 'glucose', 'pressure', 'triceps', 'insulin', 'mass', 'pedigree', 'age')
OUTCOME_VAR_NAME = 'diabetes'
DATA_FRAME$diabetes<-ifelse(DATA_FRAME$diabetes == "pos", 1, 0) #Converting string labels to binary (1, 0).
}
#Applying sub-population-based feature selection.
{
Results <- spbfs::get_selected_features(DATA_FRAME = DATA_FRAME,
FEATURE_NAMES = FEATURE_NAMES,
OUTCOME_VAR_NAME = OUTCOME_VAR_NAME,
NUM_ITERATIONS = 100,
NUM_RANDOM_VARIABLES_FOR_MATCHING = 3,
FINAL_SELECTION_THRESHOLD = 0.0,
CALIPER_VALUE = 0.1,
M_value = 1,
P_value_threshold = 0.001,
VERBOSE = 0)
}
#Plotting results.
{
Results_for_plot <- Results[order(Results$Frequency),]
barplot(Results_for_plot$Frequency,
horiz = TRUE,
names.arg = Results_for_plot$Feature_Name,
las = 1, cex.names = 0.7, cex.axis = 0.7, xlim = c(0, 1),
xlab = 'Importance')
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.