Pred_Prob: Posterior predictive probability, given 1 observed proportion

Description Usage Arguments Value References Examples

View source: R/Pred_Prob.R

Description

Posterior predictive probability for posterior probability outcome at the end of the trial, given currently observed number of patients and successes Definition: Sum(P(X2=i|x1)I[P(Delta>Dcut|x1,X2=i)>PostProb]) for all X2=i,...,n2, with P(Delta>Dcut|x1,X2=i) ~beta(beta_par[1]+x1+i,beta_par[2]+N-x1-i) with prior distribution beta_par with X2~beta-binomial(n2,beta_par[1]+x1,beta_par[2]+n1-x1)

Usage

1
Pred_Prob(N, n1, x1, beta_par, Dcut, PostProb)

Arguments

N

total number of patients at the end of the study

n1

number of patients currently observed

x1

number of successes currently observed

beta_par

two shape parameters c(alpha,beta) for prior beta distribution

Dcut

Proportion corresponding with some hypothesis

PostProb

Threshold for outcome at the end of the study, in terms of Bayesian posterior probability P(theta>Dcut|x1+x2)>PostProb

Value

Predictive Probability for outcome at the end of the study

References

Lee JJ, Liu DD.A predictive probability design for phase II cancer clinical trialsClinical Trials 2008; 5: 93–106

Examples

1
2
3
4
5
6
## Not run: 
Pred_Prob(N=68,n1=38,x1=27,beta_par=c(1  ,1)  ,Dcut=0.664,PostProb=0.95)
Pred_Prob(N=40,n1=23,x1=16,beta_par=c(0.6,0.4),Dcut=0.6  ,PostProb=0.9 ) # Example Lee 2008, 
p97, Table 1 (PP in text)

## End(Not run)

IDDI-BE/PhII_Bayes documentation built on May 19, 2021, 3:04 p.m.