Description Usage Arguments Value Author(s) Examples
Find DE genes from comparing one clust vs remaining
| 1 2 3 4 5 6 7 8 | find_markers(
  expression_matrix = NULL,
  cluster = NULL,
  selected_cluster = NULL,
  fitType = "local",
  dispersion_method = "per-condition",
  sharing_Mode = "maximum"
)
 | 
| expression_matrix | is a normalised expression matrix. | 
| cluster | corresponding cluster information in the expression_matrix by running CORE clustering or using other methods. | 
| selected_cluster | a vector of unique cluster ids to calculate | 
| fitType | string specifying 'local' or 'parametric' for DEseq dispersion estimation | 
| dispersion_method | one of the options c( 'pooled', 'pooled-CR', per-condition', 'blind' ) | 
| sharing_Mode | one of the options c("maximum", "fit-only", "gene-est-only") | 
a list containing sorted DESeq analysis results
Quan Nguyen, 2017-11-25
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | day2 <- day_2_cardio_cell_sample
mixedpop1 <-new_scGPS_object(ExpressionMatrix = day2$dat2_counts, 
    GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters)
# depending on the data, the DESeq::estimateDispersions function requires
# suitable fitType
# and dispersion_method options
DEgenes <- find_markers(expression_matrix=assay(mixedpop1),
                        cluster = colData(mixedpop1)[,1],
                        selected_cluster=c(1), #can also run for more
                        #than one clusters, e.g.selected_cluster = c(1,2)
                        fitType = "parametric", 
                        dispersion_method = "blind",
                        sharing_Mode="fit-only"
                        )
names(DEgenes)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.