GenoNet: Train the GenoNet model with dichotomous labels and features,...

Description Usage Arguments Value Examples

View source: R/GenoNet.R

Description

Before predicting the functional consequences of genetic variation, this function fits the GenoNet model and preduces fitted parameters that will be used in function GenoNet.predict().

Usage

1
GenoNet(Y,X,beta.unlabeled,nfolds)

Arguments

Y

Dichotomous outcome variables or equivalently labels.

X

Features used for model training. If pre-calculated parameters from FunLDA are being used, X must have 1016 columns corresponding to the 1016 epigenetic features in 127 tissues or cell types, with the same order. See the complete list of features (ordered) at http://www.funlda.com/genonet/help.

beta.unlabeled

Pre-calculated parameters for from unlabeled data. Currenly pre-calculated parameters for 127 tissues based on 2 millions genome-wide unlabeled variants and their FunLDA scores (Backenroth D. et al. 2018) are available for direct use.

nfolds

Number of partitions in cross-validation.

Value

LogitBeta.labeled

Trained parameters from labeled data. Parameters are coefficients in a logistic model for labeled data.

LinearBeta.unlabeled

Trained parameters (same as the pre-calculated parameters) from unlabeled data. Parameters are coefficients in a linear model for unlabeled data.

phi

Fitted weight to combined predictions from labeled data and unlabeled data. Final prediction will be (1-phi)*labeled prediction + phi*unlabeled prediction. Smaller phi indicates more use of label data.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
## GenoNet trains the model that will be used for prediction.
# Input: Y, X (covariates/features), pre-calculated parameters from unlabeled data

## GenoNet.predict predicts labels given a set of new features.
# Input: X (test data covariates/features), GenoNet.fit (fitted GenoNet model)

library(GenoNet)

#Load example data
data(GenoNet.example)
beta.FunLDA<-GenoNet.example$beta.FunLDA # pre-calculated parameters from unlabeled data
training.data<-GenoNet.example$training.data # example training data
test.data<-GenoNet.example$test.data # example test data

beta.unlabeled<-beta.FunLDA[,'E118'] # tissue E118, HepG2 Hepatocellular Carcinoma Cells
Y.training<-training.data[,4];Y.test<-test.data[,4]
X.training<-training.data[,-c(1:4)];X.test<-test.data[,-c(1:4)]

#fit GenoNet
GenoNet.fit<-GenoNet(Y.training,X.training,beta.unlabeled,nfolds=10)
Y.predict<-GenoNet.predict(X.test,GenoNet.fit)

Ionita-Laza-lab/GenoNet documentation built on Nov. 5, 2019, 2:22 p.m.