Description Usage Arguments Value Examples
Before predicting the functional consequences of genetic variation, this function fits the GenoNet model and preduces fitted parameters that will be used in function GenoNet.predict().
1 | GenoNet(Y,X,beta.unlabeled,nfolds)
|
Y |
Dichotomous outcome variables or equivalently labels. |
X |
Features used for model training. If pre-calculated parameters from FunLDA are being used, X must have 1016 columns corresponding to the 1016 epigenetic features in 127 tissues or cell types, with the same order. See the complete list of features (ordered) at http://www.funlda.com/genonet/help. |
beta.unlabeled |
Pre-calculated parameters for from unlabeled data. Currenly pre-calculated parameters for 127 tissues based on 2 millions genome-wide unlabeled variants and their FunLDA scores (Backenroth D. et al. 2018) are available for direct use. |
nfolds |
Number of partitions in cross-validation. |
LogitBeta.labeled |
Trained parameters from labeled data. Parameters are coefficients in a logistic model for labeled data. |
LinearBeta.unlabeled |
Trained parameters (same as the pre-calculated parameters) from unlabeled data. Parameters are coefficients in a linear model for unlabeled data. |
phi |
Fitted weight to combined predictions from labeled data and unlabeled data. Final prediction will be (1-phi)*labeled prediction + phi*unlabeled prediction. Smaller phi indicates more use of label data. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## GenoNet trains the model that will be used for prediction.
# Input: Y, X (covariates/features), pre-calculated parameters from unlabeled data
## GenoNet.predict predicts labels given a set of new features.
# Input: X (test data covariates/features), GenoNet.fit (fitted GenoNet model)
library(GenoNet)
#Load example data
data(GenoNet.example)
beta.FunLDA<-GenoNet.example$beta.FunLDA # pre-calculated parameters from unlabeled data
training.data<-GenoNet.example$training.data # example training data
test.data<-GenoNet.example$test.data # example test data
beta.unlabeled<-beta.FunLDA[,'E118'] # tissue E118, HepG2 Hepatocellular Carcinoma Cells
Y.training<-training.data[,4];Y.test<-test.data[,4]
X.training<-training.data[,-c(1:4)];X.test<-test.data[,-c(1:4)]
#fit GenoNet
GenoNet.fit<-GenoNet(Y.training,X.training,beta.unlabeled,nfolds=10)
Y.predict<-GenoNet.predict(X.test,GenoNet.fit)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.