ProxSCC: ProxSCC

Description Usage Arguments Value

View source: R/PRSCC-methods.R

Description

Implementing the ProxSCC algorithm for Convex Clustering

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
ProxSCC(
  X = NULL,
  U = NULL,
  Lambda,
  Gamma,
  w,
  r,
  p = nrow(X),
  n = ncol(X),
  tol = 1e-05,
  maxit = 500,
  verbose = FALSE
)

Arguments

X

Data matrix to be clustered. The rows are features, and the columns are the samples

U

Initial of clustering examplers. The rows are features, and the columns are the samples. Default is NULL

Lambda

A regularization parameter for cluster number within penalty term Lambda * w[k] * |U_,i - U_,j|_2

Gamma

A regularization parameter the number of nonzero features within penalty term Gamma * r[k] * |U_k,|_2

w

A vector of nonegative weights. w[k] denotes the weight for the k-th pair of examplers.

r

The adaptive group lasso's weights for feature sparse penalty.

p

Rows of matrix X. nrow(X) (Default).

n

Columns of matrix X. ncol(X) (Default).

tol

The convergence threshold. Default 1e-5.

maxit

The maximum iterations need for algorithms. Default 500.

verbose

False as default.

Value

U

Centroid matrix of ProxSCC

iters

number of iterations


Ivis4ml/PRScc documentation built on June 4, 2020, 9:19 a.m.