OptProxCC: OptProxCC

Description Usage Arguments

View source: R/PRSCC-methods.R

Description

If lambda = 0, ProxCC gives us n clusters, and if lambda -> lambda_max, ProxCC merges all samples into one cluster

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
OptProxCC(
  X,
  U,
  Z,
  nLambda = 10,
  Gamma,
  p,
  n,
  R,
  tol,
  maxit,
  threads,
  verbose = TRUE,
  warm = FALSE,
  metric = c("eBIC", "Silhouette")
)

Arguments

X

Data matrix to be clustered. The rows are features, and the columns are the samples

U

Initial of clustering examplers. The rows are features, and the columns are the samples. Default is NULL

Z

Prefiltered weighted by K nearest neighbouring or ANN

nLambda

A regularization parameter for cluster number within penalty term Lambda * w[k] * |U_,i - U_,j|_2

Gamma

A regularization parameter the number of nonzero features within penalty term Gamma * r[k] * |U_k,|_2

p

Number of features

n

Number of observations

R

The adaptive group lasso's weights for feature sparse penalty.

tol

tolerance for convergence

maxit

max iterations

threads

Number of Cpu threads for convex clustering used in OpenMP

verbose

print details or not

warm

Warm start scheme or not. Default FALSE

metric

Optimize scheme for hyper-parameter. eBIC, Silhouette


Ivis4ml/PRScc documentation built on June 4, 2020, 9:19 a.m.