Description Usage Arguments Details Value References Examples
Estimates a sparse inverse covariance matrix where edge-specific shrinkage parameters are informed by the anatomical connectivity information
1 2 3 |
y |
T (timepoints) by p (regions of interest) matrix-valued timecourse data. |
P |
p by p matrix of structural connectivity weights |
siglam |
Variance parameter for shrinkage parameters. |
sigmu |
Variance parameter for prior on non-anatomical source of variation in functional connectivity |
maxits |
Maximum number of iterations. |
method |
Method for updating the inverse covariance matrix. The two options are 'glasso', which implements the graphical lasso of Friedman et al (2007), or 'QUIC' which implements the QUIC |
etaInd |
Argument to indicate the inclusion (etaInd=1) or exclusion (etaInd=0) of the structural connectivity information in the estimation procedure. |
mu_init |
Mean of the prior distribution on non-anatomical source of variation in functional connectivity |
a0_init |
Scale parameter of the gamma prior prior parameter for eta parameter. Ensure a0_init>1 |
b0_init |
Shape parameter of the gamma prior prior parameter for eta parameter. |
c0 |
Tuning parameter controlling overall network sparsity |
cov_init |
If an initial p by p covariance matrix is known, specify it here. The default is NULL. |
alpha_init |
If edge-specific shrinkage values are known, please specify here. This object must be a p by p matrix but is not required for the function to produce estimates. |
outerits |
The number of outer iterations allowed for each update of the inverse covariance matrix. Value is ignored if method='glasso' |
eps |
Convergence criteria. Default is 1e-4 |
Estimates the anatomically-informed functional brain network via an edge-specific lasso penalty. The inverse covariance matrix is estimated via the graphical lasso (Friedman et al., 2007) or a quadratic approximation to the multivariate normal likelihood plus penalty (Hsieh et al., 2011) The algorithm also estimates the functional network when the anatomical information is ignored.
A list with components
Omega |
Estimated inverse covariance matrix (p by p matrix) |
Covariance |
Estimated covariance matrix (p by p matrix) |
lambda |
Estimates of the anatomically informed shrinkage factor at each edge (p by p matrix) |
Eta |
Scalar valued estimate of the average effect of structural connectivity on functional connectivity |
Method |
Method to estimate the inverse covariance matrix |
iters |
Number of iterations until convergence criteria reached |
Mu |
Estimate of the non-anatomical source of variation in functional connectivity at each edge |
LogLike |
Penalized Log-likelihood at convergence |
del |
The change in the objective function at covergence. |
BIC |
The Bayesian Information Criterion. |
Higgins, Ixavier A., Suprateek Kundu, and Ying Guo. Integrative Bayesian Analysis of Brain Functional Networks Incorporating Anatomical Knowledge. arXiv preprint arXiv:1803.00513 (2018).
Jerome Friedman, Trevor Hastie and Robert Tibshirani (2007). Sparse inverse covariance estimation with the lasso. Biostatistics 2007. http://www-stat.stanford.edu/~tibs/ftp/graph.pdf
Cho-Jui Hsieh, Matyas A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar. Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation. Advances in Neural Information Processing Systems, vol. 24, 2011, p. 2330<e2><80><93>2338.
1 2 3 4 5 6 7 8 9 10 11 | fit<-SmallWorld(10,.15,100)
y=as.matrix(fit$Data)
covdat=cov(y)
omegdat=solve(covdat)
locs=which(abs(omegdat)>quantile(omegdat,probs=.8))
temp=matrix(runif(100,0,1),10,10)
SC=matrix(0,10,10)
SC[locs]=temp[locs]
diag(SC)=0
# Model fit
fit<-SCFC(y,SC,method="QUIC",etaInd=1,siglam=10,sigmu=5,maxits=500,mu_init=0,a0_init=30,b0_init=6,c0=.5,outerits = 100);
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.