SCFC: Fit the model parameters

Description Usage Arguments Details Value References Examples

View source: R/SCFC.R

Description

Estimates a sparse inverse covariance matrix where edge-specific shrinkage parameters are informed by the anatomical connectivity information

Usage

1
2
3
SCFC(y, P, siglam = 10, sigmu = 5, maxits = 500, method = "glasso",
  etaInd = 1, mu_init = NULL, a0_init = 30, b0_init = 5, c0 = NULL,
  cov_init = NULL, alpha_init = NULL, outerits, eps = 1e-04)

Arguments

y

T (timepoints) by p (regions of interest) matrix-valued timecourse data.

P

p by p matrix of structural connectivity weights

siglam

Variance parameter for shrinkage parameters.

sigmu

Variance parameter for prior on non-anatomical source of variation in functional connectivity

maxits

Maximum number of iterations.

method

Method for updating the inverse covariance matrix. The two options are 'glasso', which implements the graphical lasso of Friedman et al (2007), or 'QUIC' which implements the QUIC

etaInd

Argument to indicate the inclusion (etaInd=1) or exclusion (etaInd=0) of the structural connectivity information in the estimation procedure.

mu_init

Mean of the prior distribution on non-anatomical source of variation in functional connectivity

a0_init

Scale parameter of the gamma prior prior parameter for eta parameter. Ensure a0_init>1

b0_init

Shape parameter of the gamma prior prior parameter for eta parameter.

c0

Tuning parameter controlling overall network sparsity

cov_init

If an initial p by p covariance matrix is known, specify it here. The default is NULL.

alpha_init

If edge-specific shrinkage values are known, please specify here. This object must be a p by p matrix but is not required for the function to produce estimates.

outerits

The number of outer iterations allowed for each update of the inverse covariance matrix. Value is ignored if method='glasso'

eps

Convergence criteria. Default is 1e-4

Details

Estimates the anatomically-informed functional brain network via an edge-specific lasso penalty. The inverse covariance matrix is estimated via the graphical lasso (Friedman et al., 2007) or a quadratic approximation to the multivariate normal likelihood plus penalty (Hsieh et al., 2011) The algorithm also estimates the functional network when the anatomical information is ignored.

Value

A list with components

Omega

Estimated inverse covariance matrix (p by p matrix)

Covariance

Estimated covariance matrix (p by p matrix)

lambda

Estimates of the anatomically informed shrinkage factor at each edge (p by p matrix)

Eta

Scalar valued estimate of the average effect of structural connectivity on functional connectivity

Method

Method to estimate the inverse covariance matrix

iters

Number of iterations until convergence criteria reached

Mu

Estimate of the non-anatomical source of variation in functional connectivity at each edge

LogLike

Penalized Log-likelihood at convergence

del

The change in the objective function at covergence.

BIC

The Bayesian Information Criterion.

References

Higgins, Ixavier A., Suprateek Kundu, and Ying Guo. Integrative Bayesian Analysis of Brain Functional Networks Incorporating Anatomical Knowledge. arXiv preprint arXiv:1803.00513 (2018).

Jerome Friedman, Trevor Hastie and Robert Tibshirani (2007). Sparse inverse covariance estimation with the lasso. Biostatistics 2007. http://www-stat.stanford.edu/~tibs/ftp/graph.pdf

Cho-Jui Hsieh, Matyas A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar. Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation. Advances in Neural Information Processing Systems, vol. 24, 2011, p. 2330<e2><80><93>2338.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
  fit<-SmallWorld(10,.15,100)
  y=as.matrix(fit$Data)
  covdat=cov(y)
  omegdat=solve(covdat)
  locs=which(abs(omegdat)>quantile(omegdat,probs=.8))
  temp=matrix(runif(100,0,1),10,10)
  SC=matrix(0,10,10)
  SC[locs]=temp[locs]
  diag(SC)=0
# Model fit
  fit<-SCFC(y,SC,method="QUIC",etaInd=1,siglam=10,sigmu=5,maxits=500,mu_init=0,a0_init=30,b0_init=6,c0=.5,outerits = 100);

IxavierHiggins/siGGMrepo documentation built on May 21, 2019, 9:39 a.m.