Description Usage Arguments Value References Examples
Estimate a precision matrix with a scale free network structure and simulate multivariate normal data.
1 | ScaleFree(p, powerparm, numadd, numT)
|
p |
Dimension of network |
powerparm |
Power parameter governing the preferential attachment model. Small values produce random networks while large values lead to scale free networks. |
numadd |
number of edges to add each iteration |
numT |
number of timepoints |
A list with components
Precision |
Estimated p by p inverse covariance matrix |
Data |
Data matrix containing the simulated time series for each region (numT by p data matrix) |
Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. http://igraph.org
1 2 3 | fit<-ScaleFree(40,1.2,3,200)
fit$Precision
fit$Data
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.