#' COUNTNA Function
#'
#' This function goes through the whole data set, counts NA's and #'returns back a visualization as a bar plot if NA's are present. #'This is very useful #' when working with an untidy data frame to #'first see how many NAs and which variables have the missing data
#' @param data tibble or data frame that you want use to test for missing NA's
#' @return a bar graph of {data} will plotted NA's or a message indicating no NA'
#' @examples
#' countna(datateachr::vancouver_trees)
#' countna(datateachr::apt_buildings)
#' @export
countna <- function(data){
data1 <- dplyr::summarise(data, dplyr::across(dplyr::everything(),
~sum(is.na(.))))
if(rowSums(data1) == 0) {
stop("This data set has no missing values")
}
data1 %>%
dplyr::select(where(~ sum(.) != 0)) %>%
tidyr::pivot_longer(cols= dplyr::everything(), names_to = "variable", values_to = "count")%>% #transpose data so it easier to plot w
ggplot2::ggplot(ggplot2::aes(forcats::fct_reorder(variable,count),count)) + #bar graph are a good way to visualize this data
ggplot2::geom_bar(stat = "identity")+
ggplot2::labs(title="Variables with missing NA values",
y="Number of NAs",
x="Variable name") +
ggplot2::coord_flip() +
ggplot2::theme_bw()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.