#' @export
#' @importFrom tabletools calculate_map
#' @rdname calculate_iga_risk_postbiopsy
calculate_iga_risk_postbiopsy_norace <- function(egfr, sbp, dbp, proteinuria, age,
mest_M, mest_E, mest_S, mest_T,
time=60,
immunosuppression=FALSE, RASB=TRUE,
explanation=FALSE){
mean_ap = tabletools::calculate_map(sbp, dbp)
M1 = as.numeric(mest_M == 1) # 0/1
E1 = as.numeric(mest_E == 1) # 0/1
S1 = as.numeric(mest_S == 1) # 0/1
T1 = as.numeric(mest_T == 1) # 0/1; if T=2, then 0
T2 = as.numeric(mest_T == 2) # 0/1; 1 if T=2
# LP = Linear predictor
LP = -0.5862*(sqrt(egfr)-8.8) - 0.0012*(mean_ap-97) + 0.1225*(log(proteinuria) - 0.09) +
0.0055*((mean_ap*log(proteinuria)) - 8.73) +
0.2693*M1 + 0.2447*E1 - 0.0050*S1 + 0.3237*T1 + 0.4221*T2 +
-0.1732*T1*log(proteinuria) - 0.3120*T2*log(proteinuria) +
-0.0227*(age-38) +
0.2675*RASB - 0.0478*RASB* log(proteinuria) -0.3266*immunosuppression
s1=max((time-2.73)/38.41871,0)^3+(46.94*max((time-240.86)/38.41871,0)^3-238.13*max((time-49.67)/38.41871,0)^3)/191.19
S0 = ifelse(time<12,
0.9983872-0.0033270*((time+0.1)/10)^0.5 - 0.0039851*(((time+0.1)/10)^0.5)*log((time+0.1)/10), #for time<12 months
1.00651-0.00105*time-0.00281*s1) # for timeā„12 months
pred_risk = 1 - S0^exp(LP)
# return(data.frame(pred_risk, s1, S0, LP, mean_ap, M1, E1, S1, T1, T2))
ifelse(!explanation, return(pred_risk),
return(sprintf("Probability of an adverse kidney event (50%% eGFR decline or ESRD) at %1.0f months is %1.1f%%",
time, pred_risk*100)) )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.