PsMCMC: Pseudo-Marginal MCMC

View source: R/PsMCMC.R

PsMCMCR Documentation

Pseudo-Marginal MCMC

Description

Generates dependent samples from target distribution using a Pseudo-Marginal MCMC proposal scheme.

Usage

PsMCMC(
  init,
  epiModel,
  obsFrame,
  epiSample,
  I0,
  alpha,
  logPrior,
  lambda,
  V,
  N,
  noIts
)

Arguments

init

initial value of epidemic parameters

epiModel

epidemic model

obsFrame

Generator function for observational model.

epiSample

Observed epidemic data.

I0

Initial state of the epidemic, which assumed to be known.

alpha

Observational parameters to be passed on to the log-likelihood function generated by obsFrame(X_sim)

logPrior

Functions which calculate log-density of the assumed priors of the epidemic parameters.

lambda

Random Walk Metropolis (RWM) proposal scale parameter

V

A square matrix containing the covariance values for RWM proposal. Shape of matrix should match the length of the init parameter.

N

Number of particles to be used in Importance Sample Estimate of posterior. This can be optimised using adapt_IS()

noIts

Number of iterations of MCMC sampler scheme to carry out.

Value

A matrix of MCMC samples and proposal acceptance rate of the sample.


JMacDonaldPhD/REpi documentation built on Aug. 2, 2022, 2:09 p.m.