Description Usage Arguments Value Source Examples
View source: R/dasymetric_map.R
Binary dasymetric mapping that uses urban areas to make more valuable predictions on population counts
1 | dasymetric_map(target, source, ancillary_data, tid = NULL, extensive = NULL)
|
target |
sf object containing geometry of the desired spatial zones |
source |
sf object that we want to interpolate |
ancillary_data |
sf object containing geometry that helps to better interpolate (i.e. land use, building footprints) |
tid |
Optional string denoting column with unique identifier for |
extensive |
Required atomic vector of strings denoting columns in |
sf
https://github.com/slu-openGIS/areal/pull/27/commits/d86490f6544af4235bdbdf5f51a9cab000d2b78e
1 2 3 4 | source_geom = sf::st_union(population_counts)
source=sf::st_sf(ID=1,population=sum(population_counts["population"]$population),source_geom)
urban = prep_landuse(corine_18)
dasymetric_map(population_counts, source, urban, extensive = "population")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.