#' svm_confidence_table
#' @export
svm_confidence_table <- function(x, #Should be a vector of text
actual_label,
model,
original_matrix= dtMatrix,
have_labels =T)
{ #First we need to convert the input into a form the model can predict off of
svm_predict_input <- function(x, #Should be a vector of text
original_matrix= dtMatrix)
{
#Converts to a document term matrix
dtMatrix <- dtMatrix
predictionData <- x
predMatrix <- RTextTools::create_matrix(predictionData, originalMatrix=dtMatrix)
predSize = length(predictionData);
predictionContainer <- RTextTools::create_container(predMatrix, labels=rep(0,predSize),
testSize=1:predSize, virgin=FALSE)
assign("predict.input", predictionContainer, envir=globalenv())
}
#Transform our text input
svm_predict_input(x)
#Run the model on this transofrmed input
results <- RTextTools::classify_model(predict.input, model)
if (have_labels==T){ #if we have the actual labels we can run some analyses on the model
results$Actual_Label <- actual_label #attach actual label
#create a column of a boolean variable to measure accuracy
results$is.match <- ifelse(results$Actual_Label==results$SVM_LABEL, 1, 0)
#Export the model predictions as a table
assign("svm_confidence_table", results, envir=globalenv())
#Makes a logistic regression that analyses the effect confidence has on
#Whether a prediction is right (1) or wrong (0)
popbio::logi.hist.plot(results$SVM_PROB, results$is.match,boxp=FALSE,type="hist",
col="navy blue", xlabel = "Confidence", ylabel = "1 = Correct, 0 = Wrong",
mainlabel = "Correct Label by Confidence Level- SVM Model")
#Function that convert a decimal to a percent
percent <- function(x, digits = 2, format = "f", ...) {
paste0(formatC(x * 100, format = format, digits = digits, ...), "%")
}
#Creating an object that is the model's accuracy on this new data
accuracy <- percent(mean(results$is.match))
#Print out the accuracy score
cat(sprintf("The model accuracy is: %s\n", accuracy))
}
else{
#if we don't have the real labels the function just exports a table
#with predictions and confidence level
assign("svm_confidence_table", results, envir=globalenv())
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.