##
tabPanel("Testing",
tabsetPanel(
tabPanel("Prevalence Testing",
tags$br(),
sidebarLayout(
sidebarPanel(
selectizeInput('prev_taxlev', 'Classification Level', choices = tax.name, selected=tax.default),
selectizeInput("prev_variable", "Test prevalence of features by:", covariates.two.levels),
checkboxInput("prev_adv", "Advanced Options"),
conditionalPanel(
condition = "input.prev_adv == true | input.global_adv == true",
numericInput('prev_p_threshold', 'Threshold for significant prevalence', 0.05, min=0, max=1),
numericInput('prev_filtering_cutof', 'Filtering cutoff relative abundance', 0.0001, min=0, max=1),
selectInput("prev_datatype", "Select data type", c("Relative Abundance" = "relabu",
"Counts" = "counts",
"log(CPM)" = "logcpm"), selected = "relabu")
),
# Do plot button
actionButton("prev_plot_btn", "Go!", class = "btn-primary"),
actionButton("prev_table_btn", "Table"),
actionButton("prev_print_btn", "Print"),
width=3
),
mainPanel(
fluidRow(
column(9,
plotlyOutput("prev_plot", height="500px"),
dataTableOutput("prev_table")
)
),
width=9)
)
),
tabPanel("Differential Testing",
tags$br(),
sidebarLayout(
sidebarPanel(
selectizeInput('diff_taxlev', 'Classification Level', choices = tax.name, selected=tax.default),
selectizeInput("input_diff_condition", "Test difference of features by:", covariates.two.levels),
checkboxInput("diff_adv", "Advanced Options"),
conditionalPanel(
condition = "input.diff_adv == true | input.global_adv == true",
numericInput('diff_padj_cutoff', 'Threshold for visualising adjusted p-values', 0.05, min=0, max=1),
numericInput('diff_min_num_filter', 'Filtering of minimal count', 5, min=0, max=10^9),
selectInput("diff_sig_only", "Show only significant results", c("Yeah why not?" = "Yes", "Nope, show me all!" = "No"), selected = "No")
),
# Do plot button
actionButton("diff_plot_btn", "Go!", class = "btn-primary"),
actionButton("diff_table_btn", "Table"),
downloadButton('diff_print_btn', 'Print Plot'),
width=3
),
mainPanel(
fluidRow(
column(9,
plotlyOutput("diff_plot", height="500px"),
dataTableOutput("diff_table")
)
),
width=9)
)
),
tabPanel("Linear Mixed Effect Models",
tags$br(),
sidebarLayout(
sidebarPanel(
selectizeInput('lme_taxlev', 'Classification Level', choices = tax.name, selected=tax.default, multiple=FALSE),
uiOutput("lme_feature"),
selectizeInput("lme_exp_var", "Variable from metadata which should be tested:", covariates),
selectizeInput("lme_random_var", "Random variable from metadata which should be taken into account:", covariates),
checkboxInput("lme_adv", "Advanced Options"),
conditionalPanel(
condition = "input.lme_adv == true | input.global_adv == true",
numericInput('lme_tolerance', 'Tolerance of overfitting for R adjustment', 10e-5, min=0, max=1),
selectInput("lme_datatype", "Select data type", c("Relative Abundance" = "relabu",
"Counts" = "counts",
"log(CPM)" = "logcpm"), selected = "relabu")
),
# Do plot button
actionButton("lme_plot_btn", "Go!", class = "btn-primary"),
actionButton("lme_stats_btn", "Adjust", class = "btn-primary"),
width=3
),
mainPanel(
fluidRow(
column(9,
plotOutput("lme_plot")
),
column(5,
tableOutput("lme_stats"))
),
width=9)
)
),
tabPanel("Bayesian Ordination and Regression AnaLysis",
tags$br(),
sidebarLayout(
sidebarPanel(
selectizeInput('boral_taxlev', 'Classification Level', choices = tax.name, selected=tax.default, multiple=FALSE),
selectizeInput("boral_covariates", "Covariate(s) from metadata which should be tested:", covariates, multiple=TRUE),
selectizeInput("boral_family", "Distribution of count data which should be used for modelling", c("Normal Distribution"="normal",
"Binomial Distribution" = "binomial",
"Counts: Poisson Distribution" = "poisson",
"Negative Binomial Distribution" = "negative.binomial",
"Log Normal Distribution"="lnormal",
"Tweedie Distribution" = "tweedie") , selected = "normal"),
checkboxInput("boral_adv", "Advanced Options"),
conditionalPanel(
condition = "input.boral_adv == true | input.global_adv == true",
selectInput("boral_datatype", "Select data type", c("Relative Abundance" = "relabu",
"Counts" = "counts",
"log(CPM)" = "logcpm"), selected = "logcpm"),
selectInput("boral_MCMC_control", "Select size of MCMC sampling control", c("Recommended for publishing" = "High",
"Stratch the surface" = "Low",
"Sneakpeak" = "DryRun"), selected = "DryRun")
),
# Do plot button
actionButton("boral_plot_btn", "Go!", class = "btn-primary"),
actionButton("boral_stats_btn", "Table", class = "btn-primary"),
width=3
),
mainPanel(
fluidRow(
splitLayout(cellWidths = c("25%", "25%","50%"), plotlyOutput("boral_coef_plot", height="400px"), plotlyOutput("boral_var_plot", height="400px"), plotOutput("boral_ord_plot"),
),
column(7,
dataTableOutput("boral_stats"))
),
width=9)
)
)
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.