Description Usage Arguments Details Value Examples
Here, a design matrix is specified for a univariate model, whereas in the function simDataGLMM, a fixed mean is used, and a multivariate model can be specified.
1 2 | simDataGLMMdesign(fixedMat, fixedCoef, randomMat, covM, disFam,
detailed.output = F, seed = NULL)
|
fixedMat |
The model matrix (numeric matrix or data.frame of factors and numeric variables) of the fixed effects to enter the linear predictor. Make sure that the contrasts fit together with the specification of the coefficients in fixedCoef. |
fixedCoef |
The coefficients to use with the fixed effects. |
randomMat |
The model matrix (data.frame of factors) of the random effects. |
covM |
Covariance matrix of the random effects. Currently, only the diagonal is used. |
disFam |
The distribution family. The canonical link function is chosen. |
detailed.output |
Output all the steps. Default: F. (This option is only for testing and can be removed.) |
seed |
integer. Seed used for the simulation. Default: NULL, so the seed provided by the system is used. |
For the Gaussian family, the variance parameter is 1. For the Gamma distribution, the rate parameter is 1.
A data frame consisting of the fixed effects and random effects as given in the input and the simulated response variable 'res'.
1 2 3 4 5 6 7 8 9 10 11 12 | # one numeric explanatory variable and 1 factor with 2 levels
fixedMat = as.matrix(runif(10))
randomMat = data.frame(group = as.factor(rep(c("A", "B"), each=5)))
simDataGLMMdesign(fixedMat, fixedCoef=0.5, randomMat, covM = 1, disFam = poisson(), seed = 1234)
fixedMat = as.matrix(runif(20), ncol=2)
randomMat = as.factor(rep(c("A", "B"), each=5))
simDataGLMMdesign(fixedMat, fixedCoef=0.5, randomMat, covM = 1, disFam = poisson())
fixedMat = data.frame(quant=runif(10), fac=as.factor(rep(c("D1", "D2"), each=5)))
randomMat = data.frame(group = as.factor(rep(c("A", "B"), each=5)), group2 = as.factor(rep(c("a", "b", "c", "d", "e"), 2)))
simDataGLMMdesign(fixedMat, fixedCoef=c(1, 5, 10), randomMat, covM = diag(c(1,2)), disFam = inverse.gaussian(), detailed.output=T)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.