knitr::opts_chunk$set(echo = TRUE) library(mfdata)
pois<-round(rpois(1000,2), 2) norm<-rnorm(1000,5) gamm<-round(rgamma(1000, 3),0) hist(runif(1000)) hist() names(df) median(pois) df<- data.frame(gamm=as.integer(gamm), norm, pois) nrow(df) df2<-mcar(df, .5) df3<-data.df2[1]
ggplot(df, aes(x=norm))+ geom_histogram(fill="green3") y<-ggplot(df2, aes(x=norm))+ geom_histogram() library(ggplot2) library(naniar) gg_miss_var(df2_miss, show_pct = T) my_list<-list(df,df2,x,y) iris_missing<- mar(iris)
LOGIC <- function(data, phi){ FD <- data e2 <- rbinom(NROW(FD), 1, phi) FD$y4[e2 == 1] <- 0 FD$y5[e2 == 1] <- 1 return(FD) }
LOGIC <- function(data, phi, var_choice){ FD <- data e2 <- rbinom(NROW(FD), 1, phi) var_comma <- str_split(var_choice, ", ") for(i in 1:length(var_choice)) { var_equal <- str_split(var_comma[[i]], " = ") var1<-which(colnames(df) == var_equal[[1]][1] ) var2<-which(colnames(df) == var_equal[[2]][1] ) FD[,var1][e2 == 1] <- var_equal[[1]][2] FD[,var2][e2 == 1] <- var_equal[[2]][2] type1<- class(data[ ,var1]) type2<- class(data[ ,var2]) if(type1 == "integer") { FD[,var1]<- as.integer(as.character(FD[ ,var1])) }else if(type1 == "numeric") { FD[,var1]<- as.numeric(as.character(FD[ , var1])) } if(type2 == "integer") { FD[,var1]<- as.integer(as.character(FD[ ,var1])) }else if(type2 == "numeric") { FD[,var1]<- as.numeric(as.character(FD[ , var1])) } } return(FD) } median(norm) which(colnames(df)== "norm") error<-("gamm = 100, norm = 100") log_df<-LOGIC(df, .5, error ) typeof(log_df[,3]) str(log_df)
df_error <- balance(df , pi.fcar, 1:3) df - df_error
df_miss<-mar(df, .7, .7) for(i in 1:NCOL(df_miss)) { ggplot() + geom_histogram(data = df_miss, aes(x = df_miss[,i])) } ggp<-ggplot() + geom_density(data = df_miss, aes(x = df_miss[,3])) + geom_density(data = df, aes(x=df[,3]))
df2<- data.frame(norm, as.integer(gamm) , pois) df2_miss<- nmar(df2, .1, .8) vec2 <- vector("list", NCOL(df2)) #for (i in 1:ncol(df2)) { a <- ggplot() + geom_density(data = df2_miss, aes(x = df2_miss[,i]), fill= "blue1", alpha=.3) + geom_density(data = df2, aes(x=df2[,i]), fill= "green1", alpha = .2) #} vec[[2]] gg_miss_var(df2_miss, show_pct = T) library(visdat) vis_dat(df2_miss) ncol(df2)
ggplot() + geom_density() str(iris) iris_miss<- mar(iris, .1 , .9) library(dplyr) df_wide <- rbind( df2, df2_miss) %>% mutate( ds = c(rep("df", NROW(df2)), rep("df_miss", NROW(df2_miss)) )) library(reshape2) long<- melt(df_wide, id.vars = "ds") ggplot(long, aes(x=value, fill = ds)) + geom_density(alpha=.4) + facet_wrap(~variable, ncol=2, scales = "free_x")
library(mfdata) iris_miss<- nmar(iris2, .5, .7) head(iris_miss[[2]] )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.