nmar: NMAR: Not missing at random

Description Usage Arguments Details Examples

View source: R/nmar.R

Description

nmar() alows the user to forceibly input missing values (NA) that replicates being not missing at random. This kind of missing depends strictly on the variable's value. If Xi > p% of max value for Xi then there is q% chance the data point is missing.

Usage

1
nmar(data, p, q, column)

Arguments

data

The data frame that you want to put missing values into.

p

Percent of the the max value in the specified column

q

Percent chance the Xi data point is missing given Xi> p% of max

column = NULL

When NULL the function will run through your whole data set Set a value to target specific columns

Details

Definintly play around with p and q if you want to get a specfic amount of data missing.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
## Inputs missing data in all the columns in df

df<- data.frame(x=rnorm(100, 10, 2), y=rpois(100,4), z=rbinom(100, 1, .4))
df_missing<- nmar(df, .25)
sum(is.na(df_missing))/300

## Inputs missing data for columns one and three of df2

df2<- data.frame(x=rnorm(100, 10, 2), y=rpois(100,4), z=rbinom(100, 1, .4))
df_missing2<- nmar(df2, p=.5, q=.2 , c(1,3))
sum(is.na(df_missing2))/200


{ ~kwd1 }
{ ~kwd2 }

JerryTucay/mfdata documentation built on May 7, 2019, 6:56 p.m.