Description Usage Arguments Value Note Author(s) References Examples
View source: R/gdcDEAnalysis.R
Performs differential gene expression analysis by limma, edgeR, and DESeq2
1 2  | gdcDEAnalysis(counts, group, comparison, method = "limma",
  n.cores = NULL, filter = TRUE)
 | 
counts | 
 a dataframe or numeric matrix of raw counts data generated 
from   | 
group | 
 a vector giving the group that each sample belongs to  | 
comparison | 
 a character string specifying the two groups 
being compared.   | 
method | 
 one of   | 
n.cores | 
 a numeric value of cores to be used for 
  | 
filter | 
 logical, whether to filter out low expression genes. 
If   | 
A dataframe containing Ensembl gene ids/miRBase v21 mature miRNA ids, gene symbols, biotypes, fold change on the log2 scale, p value, and FDR etc. of all genes/miRNAs of analysis.
It may takes long time for method='DESeq2' with a 
single core. Please use multiple cores if possible
Ruidong Li and Han Qu
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package 
for differential expression analysis of digital gene expression data. 
Bioinformatics. 2010 Jan 1;26(1):139-40. 
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 
limma powers differential expression analyses for RNA-sequencing and 
microarray studies. Nucleic acids research. 2015 Jan 20;
43(7):e47-e47. 
Love MI, Huber W, Anders S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome biology. 2014 Dec 5;
15(12):550.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  | genes <- c('ENSG00000000938','ENSG00000000971','ENSG00000001036',
        'ENSG00000001084','ENSG00000001167','ENSG00000001460')
samples <- c('TCGA-2F-A9KO-01', 'TCGA-2F-A9KP-01',
            'TCGA-2F-A9KQ-01', 'TCGA-2F-A9KR-11', 
            'TCGA-2F-A9KT-11', 'TCGA-2F-A9KW-11')
metaMatrix <- data.frame(sample_type=rep(c('PrimaryTumor',
                    'SolidTissueNormal'),each=3),
                    sample=samples,
                    days_to_death=seq(100,600,100),
                    days_to_last_follow_up=rep(NA,6))
rnaMatrix <- matrix(c(6092,11652,5426,4383,3334,2656,
                    8436,2547,7943,3741,6302,13976,
                    1506,6467,5324,3651,1566,2780,
                    834,4623,10275,5639,6183,4548,
                    24702,43,1987,269,3322,2410,
                    2815,2089,3804,230,883,5415), 6,6)
rownames(rnaMatrix) <- genes
colnames(rnaMatrix) <- samples
DEGAll <- gdcDEAnalysis(counts     = rnaMatrix, 
                        group      = metaMatrix$sample_type, 
                        comparison = 'PrimaryTumor-SolidTissueNormal', 
                        method     = 'limma')
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.