## ----include=FALSE------------------------------------------------------------
library(DetLifeInsurance)
## -----------------------------------------------------------------------------
Px1 <- Av.(x=25, h=5, n=10,r= 1,i = 0.035, data=CSO80MANB, cap = 150000) #Actuarial Present Value of the increasing life insurance.
Net_Prem <- PremiumFrac(Px1,x=25,m=5, k=1, i=0.035, data=CSO80MANB) #Net premium to be paid at the begining of each year of the defferal term.
## -----------------------------------------------------------------------------
Prem<- a(x=45,h=0, n=20,k=2,i=0.06, data=CSO80FALB, cap=12000, assumption = "constant") #Actuarial Present Value of the life annuity, paid twice a year.
Annualized_Prem<- PremiumFrac(Prem,x=45,m=10,k=4,data=CSO80FALB, i=0.06, assumption = "constant") #Annualized value of the premium to be paid four times a year for 10 years.
PremQuart<-Annualized_Prem/4
## -----------------------------------------------------------------------------
Prem<-av(x=45,h=7,n=13,r=0.05, i=0.045, data = CSO80FALB, cap=12000) #Actuarial present value of a varying life annuity that follows an arithmetic progression
AnnualPrem<-PremiumFrac(px1 = Prem, x=45, m=7, k=1, i=0.045,data= CSO80FALB) #Annual premium to be paid at the beginning of each year of the deferral term.
V_av(px= AnnualPrem, x=45, h=7, n=13, r=0.05, cantprem = 7, premperyear = 1, i=0.045, data= CSO80FALB, cap=12000, t=20) #Reserve of the coverage up to the year 20
## -----------------------------------------------------------------------------
Prem<- Avg.(x=24, h=10,n=10, k=4, r=0.06, data= CSO80MALB, i=0.03, cap= 100000, assumption = "UDD", variation = "inter") #Actuarial present value of a varying life insurance according to a geometric progression
AnnualPrem<- PremiumFrac(px1 = Prem, x=24, m=10, k=1, data= CSO80MALB, i=0.03) #Annual premium to be paid at the beginning of each year of the deferral term
V_Avg.(px =AnnualPrem, x=24, h=10, n=10, k=4, r=0.06, i=0.03, data= CSO80MALB, cantprem = 10, premperyear = 1, assumption = "UDD", variation = "inter", cap=100000, t=240) #Reserve of the coverage up to the month 240
## -----------------------------------------------------------------------------
Prem<- A.(x=40, h=0, n=15, k=1, i=0.06, data= CSO80FANB, cap=105000) #Actuarial present value of the life insurance
AnnualizedPrem<-PremiumFrac(px1 = Prem, x=40, m=15, k=4, data= CSO80FANB, i=0.06, assumption = "UDD") #Annualized value of the premium to be paid four time a year.
V_A.(px = AnnualizedPrem/4, x=40, h=0, n=15, cantprem = 60, premperyear = 4, data=CSO80FANB, i=0.06, assumption = "UDD", t= 180, cap=105000) #Reserve of the coverage up to the month 180
## -----------------------------------------------------------------------------
Prem<- aD(x=20, h=5, n=5, k=2, i=0.055, data= CSO80MANB, assumption = "constant", variation = "intra", cap=12000) #Actuarial present value of a decreasing life annuity
Annualized_Prem<- PremiumFrac(px1 = Prem, x=20, m=5, k=12, assumption = "constant", data=CSO80MANB, i=0.055) #Annualized value of the premium to be paid monthly
V_aD(px= Annualized_Prem/12 ,x=20,h=5,n=5, k=2, premperyear = 12, cantprem = 60, i=0.055, data= CSO80MANB, assumption = "constant", variation = "intra", cap=12000, t=120) #Reserve up to the month 120
## -----------------------------------------------------------------------------
ages<-c(20,34,36,50)
Px<-Am.(x=ages,h=5,n=30,i=0.06,data=CSO80MANB,ndeath=2,cap=200000) #Actuarial present value of a life insurnace for a group to be paid when the second death occur.
Px/am(x=ages,h=0,n=5,i=0.06,data=CSO80MANB,type="atleast",quant=3) #Annual premium to be paid when at least 3 of the group are still alive
## -----------------------------------------------------------------------------
Table_Gompertz(x0=0, omega=100, B=0.00008, C= 1.07)
## -----------------------------------------------------------------------------
MortTable<-Table_Moivre(0,100)
Px<- A.(x=35,h=0,n=20,i=0.03,data= MortTable, cap=10000) + E(x=35,n=20, i=0.03, data=MortTable, cap=10000) #A Dotal (endowment) coverage
AnnualPrem<-PremiumFrac(px1 = Px, x=35, m=10, k=6, data= MortTable, effect = "yes", assumption = "UDD") #The annualized value of the premium
AnnualPrem/6 #The premium to be paid every two months
## -----------------------------------------------------------------------------
Fractional_table(CSO58MANB, frac=3, i= 0.047, assumption = "UDD")
## -----------------------------------------------------------------------------
Loan_amortization(V0=130000,n=15,i=0.04,method = "interest_only")
## -----------------------------------------------------------------------------
Loan_amortization(V0=123000,n=12,i=0.06,alic=0.21,method="constant_installment")
## -----------------------------------------------------------------------------
Loan_amortization(V0=300000,n=10,i=0.03,ins=0.01,method = "constant_principal")
## -----------------------------------------------------------------------------
Px1<-Payment_Protection(x=35,n=15,V0=1050000,i=0.05,ip=0.055,data=CSO58MALB,type="outstanding_debt",method="constant_principal") #Actuarial present value of the coverage
Annual_Px1 <- PremiumFrac(px1=Px1,x=35,m=5, k = 1,i=0.05,data=CSO58MALB) #Annual Premium to be paid
V_Payment_Protection(px=Annual_Px1,x=35,n=15,k=1,cantprem=5,premperyear=1,i=0.05,ip=0.055,data =CSO58MALB, type="outstanding_debt",method="constant_principal",V0=1050000,t=15) #Reserve uo to the year 15
## -----------------------------------------------------------------------------
Px1 <- Payment_Protection(x=30,n=10,k=2,V0=1000000,i=0.035,ip=0.06,data=CSO80FANB,type="payments",method="constant_instalment") #Actuarial present value of the coverage
Annual_Px1 <- PremiumFrac(px1=Px1,x=30,m=3, k = 6,i=0.035,data=CSO80FANB, assumption = "UDD") #Annualized value of the premium to be paid every two months
V_Payment_Protection(px=Annual_Px1/6,x=30,n=10,k=2,cantprem=18,premperyear=6,i=0.035,ip=0.06,data =CSO80FANB, type="payments",method="constant_instalment",V0=1000000,t=120) #Reserve up to the month 120
## -----------------------------------------------------------------------------
i<-Rate_converter(0.4,"j",60,"i",365, "days") #Convert the annual nominal rate of 2 periods to a effective annual interest rate
af(0,20,i)*1200 # Calculate the present value of an annuity-due of amount $1200 paid annually for 20 years at the rate of interest of i.
## -----------------------------------------------------------------------------
i<-Rate_converter(0.07,"f",4,"i",1, "frac") #Convert the annual nominal discount rate of 4 periods to a effective annual interest rate
sf(1,10,i)*3000 # Calculate the final value of an annuity-immediate of amount $3000 paid annually for 20 years at the rate of interest of i.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.