knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "80%" )
The goal of jofou.lib
is to regroup all the functions that are useful for me to work efficiently.
You can install the lastest version of jofou.lib with:
devtools::install_github("jofou/jofou.lib")
This are basics examples which shows you how use the my_inspect group function:
library(tidyverse) library(jofou.lib) iris %>% my_inspect_cat()
library(tidyverse) library(jofou.lib) iris %>% my_inspect_cor()
library(tidyverse) library(jofou.lib) iris %>% my_inspect_imb()
library(tidyverse) library(jofou.lib) iris %>% my_inspect_na()
library(tidyverse) library(jofou.lib) iris %>% my_inspect_num()
library(tidyverse) library(jofou.lib) iris %>% my_inspect_types()
I also have a couples of other functions to show distributions of numeric and categorical variables:
library(tidyverse) library(jofou.lib) iris %>% my_num_dist()
library(tidyverse) library(jofou.lib) iris %>% my_corr_num_graph()
library(tidyverse) library(jofou.lib) iris %>% my_cat_dist()
These are basic examples that show you how to use my utilities functions:
library(tidyverse) library(jofou.lib) iris %>% mutate(cat_Sepal.Length=round(Sepal.Length, digits = 0)) %>% group_by(cat_Sepal.Length) %>% summarise(mode_species=calculate_mode(Species))
library(tidyverse) library(jofou.lib) iris %>% filter(Species %ni% "setosa") %>% group_by(Species) %>% summarise(nb=dplyr::n())
These are basic examples that show you how to use my machine learning utilities functions:
library(tidyverse) library(lubridate) library(timetk) library(parsnip) library(rsample) library(modeltime) # Data data_prepared_tbl <- m4_monthly %>% filter(id == "M750") # Split Data 80/20 splits <- initial_time_split(data_prepared_tbl, prop = 0.9) # Model: auto_arima model_fit_arima <- arima_reg() %>% set_engine(engine = "auto_arima") %>% fit(value ~ date, data = training(splits)) # Calibrate and plot calibrate_and_plot(model_fit_arima, type="testing")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.