knitr::opts_chunk$set( collapse = TRUE, comment = "#>", # Customize output of figures out.width = '80%', fig.align = "center", fig.width = 7, fig.height = 5 )
This is how to get started with jofou.lib
.
my_inspect_cat()
my_inspect_cor()
my_inspect_imb()
my_inspect_na()
my_inspect_num()
my_inspect_types()
my_num_dist()
my_corr_num_graph()
my_cat_dist()
Load the following Libraries
library(tidyverse) library(jofou.lib)
The only requirement is that the data must have the type of variables your looking to summarize.
head(iris)
Use my_inspect_types()
to quickly get a summary of your data.
iris %>% my_inspect_types()
Use my_inspect_num()
to quickly get a summary of your numerical variables.
iris %>% my_inspect_num()
Look at correlation between numerical variables.
iris %>% my_inspect_cor()
Look at the distribution of numeric variables.
iris %>% my_num_dist()
Look at the correlation between numeric variables.
iris %>% my_corr_num_graph()
Use my_inspect_cat()
to quickly get a summary of your categorical variables.
iris %>% my_inspect_cat()
Or see the most frequently used categorical variables.
iris %>% my_inspect_imb()
Use my_cat_dist()
to look at the distribution of categorical variables.
iris %>% my_cat_dist()
Use my_inspect_na()
to quickly know where are the NAs in your data.
iris %>% my_inspect_na()
calculate_mode()
%ni%
Load the following Libraries
library(tidyverse) library(jofou.lib)
The only requirement is that the data must have the type of variables your looking to summarize.
head(iris)
Use calculate_mode()
to quickly get the mode of your categorical variable.
iris %>% mutate(cat_Sepal.Length=round(Sepal.Length, digits = 0)) %>% group_by(cat_Sepal.Length) %>% summarise(mode_species=calculate_mode(Species))
Use %ni%()
remove value in variable.
iris %>% filter(Species %ni% "setosa") %>% group_by(Species) %>% summarise(nb=dplyr::n())
calibrate_and_plot()
Load the following Libraries
library(tidyverse) library(lubridate) library(timetk) library(parsnip) library(rsample) library(modeltime) library(jofou.lib)
data_prepared_tbl <- m4_monthly %>% filter(id == "M750") # Split Data 80/20 splits <- initial_time_split(data_prepared_tbl, prop = 0.9)
model_fit_arima <- arima_reg() %>% set_engine(engine = "auto_arima") %>% fit(value ~ date, data = training(splits))
Use calibrate_and_plot()
to quickly get the visual result of the fitted model.
calibrate_and_plot(model_fit_arima, type="testing")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.