JonasMoss/kdensity: Kernel Density Estimation with Parametric Starts and Asymmetric Kernels
Version 1.0.0

Handles univariate non-parametric density estimation with parametric starts and asymmetric kernels in a simple and flexible way. Kernel density estimation with parametric starts involves fitting a parametric density to the data before making a correction with kernel density estimation, see Hjort & Glad (1995) . Asymmetric kernels make kernel density estimation more efficient on bounded intervals such as (0, 1) and the positive half-line. Supported asymmetric kernels are the gamma kernel of Chen (2000) , the beta kernel of Chen (1999) , and the copula kernel of Jones & Henderson (2007) . User-supplied kernels, parametric starts, and bandwidths are supported.

Getting started

Package details

AuthorJonas Moss, Martin Tveten
MaintainerJonas Moss <[email protected]>
LicenseMIT + file LICENSE
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
JonasMoss/kdensity documentation built on March 20, 2018, 12:10 a.m.