#' @title The Classical Record Model
#'
#' @importFrom stats rnorm
#'
#' @description Random generation for the classical record model, i.e.,
#' sequences of independent and identically distributed (IID) continuous
#' random variables (RVs).
#'
#' @param Trows,Mcols Integers indicating the number of rows and columns of the
#' returned matrix, i.e., the length and number of series for the record
#' analysis.
#' @param rdist A function that simulates continuous random variables,
#' e.g., \code{\link{runif}} (fastest in \code{stats} package),
#' \code{\link{rnorm}} or \code{\link{rexp}}.
#' @param ... Further arguments to introduce in the \code{rdist} function.
#' @return A matrix of draws of IID continuous RVs with common distribution
#' \code{rdist}.
#'
#' @author Jorge Castillo-Mateo
#' @seealso \code{\link{L.record}}, \code{\link{S.record}},
#' \code{\link{N.record}}, \code{\link{Nmean.record}},
#' \code{\link{p.record}}, \code{\link{records}}
#' @references
#' Arnold BC, Balakrishnan N, Nagaraja HN (1998).
#' \emph{Records}.
#' Wiley Series in Probability and Statistics. Wiley, New York.
#' \doi{10.1002/9781118150412}.
#'
#' @examples
#' # By default, draw a sample of 100 series of length 50
#' # with observations coming from a standard normal distribution
#' X <- rcrm()
#' # Compute its record indicators
#' I <- I.record(X)
#' # Implement some tests
#' N.test(X, distribution = "poisson-binomial")
#' foster.test(X, weights = function(t) t-1, statistic = "D")
#'
#' @export rcrm
rcrm <- function(Trows = 50, Mcols = 100, rdist = stats::rnorm, ...) {
return(matrix(rdist(Trows * Mcols, ...), nrow = Trows, ncol = Mcols))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.