k_n_upstream: Carrying Capacity for basal species B, based on number of...

Description Usage Arguments Details Value References Examples

View source: R/k_n_upstream.R

Description

Carrying Capacity for basal species B, based on number of upstream nodes

Usage

1
2
3
4
5
6
7
8
9
k_n_upstream(
  k_base = 150,
  k_c = 10,
  k_min_exponent = 1.1,
  k_max_exponent = 1.35,
  r_max,
  n_upstream,
  n_patch
)

Arguments

k_base

integer

k_c

numeric

k_min_exponent

minimum value for exponent describing productivity ~ watershed area relationship. default is 1.10 (Koening et al. 2019) numeric

k_max_exponent

minimum value for exponent describing productivity ~ watershed area relationship. default is 1.35 (Koening et al. 2019) numeric

r_max

maximum reproductive rate, numeric

n_upstream

number of patches upstream + 1. i.e., the most upstream terminal patch has n_upstream = 1, integer

n_patch

number of patches to calculate, should be same length as n_upstreamm, integer

Details

The minimum carrying capacity is equal to k_base + k_c. The upstream terminal node The exponent for each patch is sampled from a uniform distribution from k_min_exponent to k_max_exponent. k = k_base + k_c * n_upstream^k_exp K is automatically rounded to the nearest integer. b = (r_max - 1) /k

Value

list with 2 vector elements, each the length of n_patch. k = carrying capacity for that patch. b = parameter controlling realized strength of population growth at a given population size. b is used internally in igp_sim()

References

Koenig, L.E., Helton, A.M., Savoy, P., Bertuzzo, E., Heffernan, J.B., Hall, R.O., Jr. and Bernhardt, E.S. (2019), Emergent productivity regimes of river networks. Limnol Oceanogr, 4: 173-181. https://doi.org/10.1002/lol2.10115

Examples

1
2
3
k_n_upstream(k_base = 150, k_c = 10, k_min_exponent = 1.10,
 k_max_exponent = 1.35, r_max = 4,
  n_upstream = c(5, 10), n_patch = 2)

Jpomz/IGPtoy documentation built on Aug. 2, 2021, 5:28 a.m.