test_that("tomatrix classes match", {
library(Matrix)
library(igraph)
library(network)
### unipartite matrix --> matrix
M <- matrix(rbinom(5*5,1,.5),5,5)
rownames(M) <- LETTERS[1:5]
colnames(M) <- LETTERS[1:5]
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### bipartite matrix --> matrix
M <- matrix(rbinom(5*5,1,.5),5,5)
rownames(M) <- LETTERS[1:5]
colnames(M) <- letters[1:5]
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### Matrix --> matrix
M <- matrix(rbinom(5*5,1,.5),5,5)
rownames(M) <- LETTERS[1:5]
colnames(M) <- LETTERS[1:5]
M <- Matrix::Matrix(M)
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### sparse matrix --> matrix
M <- matrix(rbinom(5*5,1,.5),5,5)
rownames(M) <- LETTERS[1:5]
colnames(M) <- LETTERS[1:5]
M <- Matrix::Matrix(M, sparse = TRUE)
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### edgelist (unweighted bipartite) --> matrix
M <- data.frame(v1 = c("Senator A", "Senator A", "Senator B"),
v2 = c("Bill X", "Bill Y", "Bill X"))
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### edgelist (weighted bipartite) --> matrix
M <- data.frame(v1 = c("Senator A", "Senator A", "Senator B"),
v2 = c("Bill X", "Bill Y", "Bill X"),
v3 = c(1,2,3))
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### edgelist (unweighted unipartite) --> matrix
M <- data.frame(v1 = c("Senator A", "Senator A", "Senator C"),
v2 = c("Senator B", "Senator C", "Senator A"))
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### edgelist (weighted unipartite) --> matrix
M <- data.frame(v1 = c("Senator A", "Senator A", "Senator C"),
v2 = c("Senator B", "Senator C", "Senator A"),
v3 = c(2,7,1))
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### igraph (unweighted bipartite) --> matrix
M <- igraph::sample_bipartite(3,5,p=.5)
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### igraph (weighted bipartite) --> matrix
M <- igraph::sample_bipartite(3,5,p=.5)
igraph::E(M)$weight <- 4
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### igraph (unweighted unipartite) --> matrix
M <- igraph::erdos.renyi.game(n = 5, p = .5, directed = TRUE)
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### igraph (weighted unipartite) --> matrix
M <- igraph::erdos.renyi.game(n = 5, p = .5, directed = TRUE)
igraph::E(M)$weight <- 4
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### statnet (unweighted bipartite) --> matrix
M <- network::network(matrix(rbinom(5*5,1,.5),5,5), bipartite = TRUE)
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### statnet (weighted bipartite) --> matrix
M <- network::network(matrix(rbinom(5*5,1,.5),5,5), bipartite = TRUE)
network::set.edge.attribute(M,"weight",4)
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### statnet (unweighted unipartite) --> matrix
M <- network::network(matrix(rbinom(5*5,1,.5),5,5), bipartite = FALSE)
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
### statnet (weighted bipartite) --> matrix
M <- network::network(matrix(rbinom(5*5,1,.5),5,5), bipartite = FALSE)
network::set.edge.attribute(M,"weight",4)
test <- tomatrix(M)
expect_equal(class(test$G), c("matrix","array"))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.