library(dwc.wells)
df <- model_data %>% select(well_age_years, n_rehab, time_since_rehab_years, volume_m3_d.cv)
df <- model_data %>% select(well_age_years, Qs_rel)
ggplot(df, aes(x = well_age_years, y = Qs_rel)) +
geom_point(alpha = 0.3)
kclust <- kmeans(df, centers = 3)
kclust
summary(kclust)
augment(kclust, df)
tidy(kclust)
glance(kclust)
library(dplyr)
kclusts <-
tibble(k = 1:9) %>%
mutate(
kclust = map(k, ~kmeans(df, .x)),
tidied = map(kclust, tidy),
glanced = map(kclust, glance),
augmented = map(kclust, augment, df)
)
kclusts
clusters <-
kclusts %>%
unnest(cols = c(tidied))
assignments <-
kclusts %>%
unnest(cols = c(augmented))
clusterings <-
kclusts %>%
unnest(cols = c(glanced))
p1 <-
ggplot(assignments, aes(x = well_age_years, y = Qs_rel)) +
geom_point(aes(color = .cluster), alpha = 0.8) +
geom_point(data = clusters, size = 5, shape = "x") +
facet_wrap(~ k)
p1
ggplot(clusterings, aes(k, tot.withinss)) +
geom_line() +
geom_point()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.