## code to prepare `mbr4.0` dataset goes here
library(readxl)
library(dplyr)
metadata_mbr4_wide <- readxl::read_excel("inst/extdata/MBR4.0_Kopfzeile.xlsx")
metadata_mbr4_wide %>%
dplyr::rename(key = "Abkürzung") %>%
tidyr::pivot_longer(
cols = !tidyselect::matches("key"),
names_to = "ParameterCode_SiteCode"
) %>%
tidyr::separate("ParameterCode_SiteCode",
into = c("ParameterCode", "SiteCode"),
sep = "_", extra = "merge", remove = FALSE
) %>%
tidyr::pivot_wider(names_from = "key", values_from = value) %>%
tidyr::separate("Beschreibung",
into = c("ParamaterName", "SiteName"),
sep = "\\s", extra = "merge", remove = FALSE
) %>%
dplyr::rename(
"ParameterName_SiteName" = Beschreibung,
"Unit" = Einheit,
"Comment" = Bemerkung
) %>%
dplyr::mutate(
Source = "online",
DataType = dplyr::if_else(!is.na(Comment) & Comment == "SUMME",
"calculated", "raw"
)
) %>%
## first script based on XLSX (not needed anymore after "cleaning by Jette)
write.csv2("inst/extdata/metadata_mbr4_untidy.csv",
row.names = FALSE,
na = ""
)
mbr4.0_metadata <- readr::read_csv2("inst/extdata/metadata_mbr4.csv")
readr::write_csv(mbr4.0_metadata, "inst/shiny/mbr4.0/data/metadata.csv")
selected_cols <- c("ParameterCode",
"ParameterName",
"ParameterUnit",
"SiteCode",
"SiteName")
ignore_paras <- c("Zustand", "Meldungen", "Laufende Nr.", "Zeitstempel")
mbr4.0_metadata[,selected_cols] %>%
dplyr::filter(!ParameterName %in% ignore_paras) %>%
dplyr::mutate(ParameterThresholdComparison = NA_character_,
ParameterThreshold = NA_character_,
ParameterThresholdSource = NA_character_) %>%
readr::write_csv2("inst/shiny/mbr4.0/data/thresholds.csv")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.