Description Usage Arguments Value References
Obtain a vector with information, summarized into one value, for each available item.
1 2 3 4 5  | get_summarized_information(information_summary, estimate, model, answers,
  prior_form, prior_parameters, available, administered, number_items,
  number_dimensions, estimator, alpha, beta, guessing,
  number_itemsteps_per_item, pad = TRUE,
  eap_estimation_procedure = "riemannsum")
 | 
information_summary | 
 How to summarize Fisher information, used for item selection. One of
  | 
estimate | 
 Vector with current theta estimate.  | 
model | 
 One of   | 
answers | 
 Vector with answers to administered items.  | 
prior_form | 
 String indicating the form of the prior; one of   | 
prior_parameters | 
 List containing mu and Sigma of the normal prior:   | 
available | 
 Vector with indices of yet available items.  | 
administered | 
 Vector with indices of administered items.  | 
number_items | 
 Number of items in test bank.  | 
number_dimensions | 
 Number of dimensions of theta.  | 
estimator | 
 Type of estimator to be used, one of   | 
alpha | 
 Matrix of alpha parameters, one column per dimension, one row per item. Row names should contain the item keys. Note that so called within-dimensional models still use an alpha matrix, they simply have only one non-zero loading per item.  | 
beta | 
 Matrix of beta parameters, one column per item step, one row per item. Row names should contain the item keys. 
Note that   | 
guessing | 
 Matrix with one column of guessing parameters per item. Row names should contain the item keys. Optionally used in 3PLM model, ignored for all others.  | 
number_itemsteps_per_item | 
 Vector containing the number of non missing cells per row of the beta matrix.  | 
pad | 
 If   | 
eap_estimation_procedure | 
 String indicating the estimation procedure if estimator is expected aposteriori and prior form is normal. One of   | 
Vector with summarized information for each available item.
Segall, D. O. (1996). Multidimensional adaptive testing. Psychometrika, 61(2), 331 - 354. doi:10.1007/BF02294343.
Segall, D. O. (2000). Principles of multidimensional adaptive testing. In W. J. van der Linden & en C. A. W. Glas (Eds.), Computerized adaptive testing: Theory and practice (pp. 53 - 74). Dordrecht: Kluwer Academic Publishers.
Van der Linden, W. J. (1999). Multidimensional Adaptive Testing with a Minimum Error- Variance Criterion. Journal of Educational and Behavioral Statistics, 24(4), 398 - 412. doi:10.3102/10769986024004398.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.