Description Usage Arguments Value References
Obtain a vector with information, summarized into one value, for each available item.
1 2 3 4 5 | get_summarized_information(information_summary, estimate, model, answers,
prior_form, prior_parameters, available, administered, number_items,
number_dimensions, estimator, alpha, beta, guessing,
number_itemsteps_per_item, pad = TRUE,
eap_estimation_procedure = "riemannsum")
|
information_summary |
How to summarize Fisher information, used for item selection. One of
|
estimate |
Vector with current theta estimate. |
model |
One of |
answers |
Vector with answers to administered items. |
prior_form |
String indicating the form of the prior; one of |
prior_parameters |
List containing mu and Sigma of the normal prior: |
available |
Vector with indices of yet available items. |
administered |
Vector with indices of administered items. |
number_items |
Number of items in test bank. |
number_dimensions |
Number of dimensions of theta. |
estimator |
Type of estimator to be used, one of |
alpha |
Matrix of alpha parameters, one column per dimension, one row per item. Row names should contain the item keys. Note that so called within-dimensional models still use an alpha matrix, they simply have only one non-zero loading per item. |
beta |
Matrix of beta parameters, one column per item step, one row per item. Row names should contain the item keys.
Note that |
guessing |
Matrix with one column of guessing parameters per item. Row names should contain the item keys. Optionally used in 3PLM model, ignored for all others. |
number_itemsteps_per_item |
Vector containing the number of non missing cells per row of the beta matrix. |
pad |
If |
eap_estimation_procedure |
String indicating the estimation procedure if estimator is expected aposteriori and prior form is normal. One of |
Vector with summarized information for each available item.
Segall, D. O. (1996). Multidimensional adaptive testing. Psychometrika, 61(2), 331 - 354. doi:10.1007/BF02294343.
Segall, D. O. (2000). Principles of multidimensional adaptive testing. In W. J. van der Linden & en C. A. W. Glas (Eds.), Computerized adaptive testing: Theory and practice (pp. 53 - 74). Dordrecht: Kluwer Academic Publishers.
Van der Linden, W. J. (1999). Multidimensional Adaptive Testing with a Minimum Error- Variance Criterion. Journal of Educational and Behavioral Statistics, 24(4), 398 - 412. doi:10.3102/10769986024004398.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.