\dontshow{
### Import RAINBOWR
require(RAINBOWR)
### Load example datasets
data("Rice_Zhao_etal")
Rice_geno_score <- Rice_Zhao_etal$genoScore
Rice_geno_map <- Rice_Zhao_etal$genoMap
Rice_pheno <- Rice_Zhao_etal$pheno
### Select one trait for example
trait.name <- "Flowering.time.at.Arkansas"
y <- as.matrix(Rice_pheno[1:30, trait.name, drop = FALSE])
# use first 30 accessions
### Remove SNPs whose MAF <= 0.05
x.0 <- t(Rice_geno_score)
MAF.cut.res <- MAF.cut(x.0 = x.0, map.0 = Rice_geno_map)
x <- MAF.cut.res$x
map <- MAF.cut.res$map
### Estimate genomic relationship matrix (GRM)
K.A <- calcGRM(genoMat = x)
### Modify data
modify.data.res <- modify.data(pheno.mat = y, geno.mat = x, map = map,
return.ZETA = TRUE, return.GWAS.format = TRUE)
pheno.GWAS <- modify.data.res$pheno.GWAS
geno.GWAS <- modify.data.res$geno.GWAS[1:300, ] ### first 300 SNPs
ZETA <- modify.data.res$ZETA
### Perform SNP-set GWAS (by regarding 41 SNPs as one SNP-set)
SNP_set.res <- RGWAS.multisnp(pheno = pheno.GWAS, geno = geno.GWAS,
ZETA = ZETA, n.PC = 4, test.method = "LR",
kernel.method = "linear", gene.set = NULL,
test.effect = "additive", window.size.half = 10,
window.slide = 21, plot.Manhattan = FALSE,
plot.qq = FALSE, verbose = FALSE,
count = FALSE, time = FALSE,
package.MM = "gaston", parallel.method = "mclapply",
skip.check = TRUE, n.core = 1)
}
\donttest{
### Import RAINBOWR
require(RAINBOWR)
### Load example datasets
data("Rice_Zhao_etal")
Rice_geno_score <- Rice_Zhao_etal$genoScore
Rice_geno_map <- Rice_Zhao_etal$genoMap
Rice_pheno <- Rice_Zhao_etal$pheno
Rice_haplo_block <- Rice_Zhao_etal$haploBlock
### View each dataset
See(Rice_geno_score)
See(Rice_geno_map)
See(Rice_pheno)
See(Rice_haplo_block)
### Select one trait for example
trait.name <- "Flowering.time.at.Arkansas"
y <- as.matrix(Rice_pheno[, trait.name, drop = FALSE])
### Remove SNPs whose MAF <= 0.05
x.0 <- t(Rice_geno_score)
MAF.cut.res <- MAF.cut(x.0 = x.0, map.0 = Rice_geno_map)
x <- MAF.cut.res$x
map <- MAF.cut.res$map
### Estimate genomic relationship matrix (GRM)
K.A <- calcGRM(genoMat = x)
### Modify data
modify.data.res <- modify.data(pheno.mat = y, geno.mat = x, map = map,
return.ZETA = TRUE, return.GWAS.format = TRUE)
pheno.GWAS <- modify.data.res$pheno.GWAS
geno.GWAS <- modify.data.res$geno.GWAS
ZETA <- modify.data.res$ZETA
### View each data for RAINBOWR
See(pheno.GWAS)
See(geno.GWAS)
str(ZETA)
### Perform SNP-set GWAS (by regarding 21 SNPs as one SNP-set)
SNP_set.res <- RGWAS.multisnp(pheno = pheno.GWAS, geno = geno.GWAS,
ZETA = ZETA, n.PC = 4, test.method = "LR",
kernel.method = "linear", gene.set = NULL,
test.effect = "additive", window.size.half = 10,
window.slide = 21, package.MM = "gaston",
parallel.method = "mclapply",
skip.check = TRUE, n.core = 2)
See(SNP_set.res$D) ### Column 4 contains -log10(p) values for markers
### Perform SNP-set GWAS 2 (by regarding 11 SNPs as one SNP-set with sliding window)
### It will take almost 2 minutes...
SNP_set.res2 <- RGWAS.multisnp(pheno = pheno.GWAS, geno = geno.GWAS,
ZETA = ZETA, n.PC = 4, test.method = "LR",
kernel.method = "linear", gene.set = NULL,
test.effect = "additive", window.size.half = 5,
window.slide = 1, package.MM = "gaston",
parallel.method = "mclapply",
skip.check = TRUE, n.core = 2)
See(SNP_set.res2$D) ### Column 4 contains -log10(p) values for markers
### Perform haplotype-block GWAS (by using the list of haplotype blocks estimated by PLINK)
haplo_block.res <- RGWAS.multisnp(pheno = pheno.GWAS, geno = geno.GWAS,
ZETA = ZETA, n.PC = 4, test.method = "LR",
kernel.method = "linear", gene.set = Rice_haplo_block,
test.effect = "additive", package.MM = "gaston",
parallel.method = "mclapply",
skip.check = TRUE, n.core = 2)
See(haplo_block.res$D) ### Column 4 contains -log10(p) values for markers
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.