\dontshow{
### Import RAINBOWR
require(RAINBOWR)
### Load example datasets
data("Rice_Zhao_etal")
Rice_geno_score <- Rice_Zhao_etal$genoScore
Rice_geno_map <- Rice_Zhao_etal$genoMap
Rice_pheno <- Rice_Zhao_etal$pheno
### Select one trait for example
trait.name <- "Flowering.time.at.Arkansas"
y <- as.matrix(Rice_pheno[1:30, trait.name, drop = FALSE])
# use first 30 accessions
### Remove SNPs whose MAF <= 0.05
x.0 <- t(Rice_geno_score)
MAF.cut.res <- MAF.cut(x.0 = x.0, map.0 = Rice_geno_map)
x <- MAF.cut.res$x
map <- MAF.cut.res$map
### Estimate genomic relationship matrix (GRM)
K.A <- calcGRM(genoMat = x)
### Modify data
modify.data.res <- modify.data(pheno.mat = y, geno.mat = x, map = map,
return.ZETA = TRUE, return.GWAS.format = TRUE)
pheno.GWAS <- modify.data.res$pheno.GWAS
geno.GWAS <- modify.data.res$geno.GWAS
ZETA <- modify.data.res$ZETA
### Perform two step SNP-set GWAS (single-snp GWAS -> SNP-set GWAS for significant markers)
twostep.SNP_set.res <- RGWAS.twostep(pheno = pheno.GWAS, geno = geno.GWAS, ZETA = ZETA,
kernel.percent = 0.2, n.PC = 4, test.method.2 = "LR",
kernel.method = "linear", gene.set = NULL,
test.effect.2 = "additive", window.size.half = 3,
window.slide = 2, plot.qq.1 = FALSE,
plot.Manhattan.1 = FALSE, plot.qq.2 = FALSE,
plot.Manhattan.2 = FALSE, verbose = FALSE,
count = FALSE, time = FALSE,
package.MM = "gaston", parallel.method = "mclapply",
skip.check = TRUE, n.core = 1)
### Column 4 contains -log10(p) values for markers with the first method (single-SNP GWAS)
### Column 5 contains -log10(p) values for markers with the second method (SNP-set GWAS)
}
\donttest{
### Import RAINBOWR
require(RAINBOWR)
### Load example datasets
data("Rice_Zhao_etal")
Rice_geno_score <- Rice_Zhao_etal$genoScore
Rice_geno_map <- Rice_Zhao_etal$genoMap
Rice_pheno <- Rice_Zhao_etal$pheno
### View each dataset
See(Rice_geno_score)
See(Rice_geno_map)
See(Rice_pheno)
### Select one trait for example
trait.name <- "Flowering.time.at.Arkansas"
y <- as.matrix(Rice_pheno[, trait.name, drop = FALSE])
### Remove SNPs whose MAF <= 0.05
x.0 <- t(Rice_geno_score)
MAF.cut.res <- MAF.cut(x.0 = x.0, map.0 = Rice_geno_map)
x <- MAF.cut.res$x
map <- MAF.cut.res$map
### Estimate genomic relationship matrix (GRM)
K.A <- calcGRM(genoMat = x)
### Modify data
modify.data.res <- modify.data(pheno.mat = y, geno.mat = x, map = map,
return.ZETA = TRUE, return.GWAS.format = TRUE)
pheno.GWAS <- modify.data.res$pheno.GWAS
geno.GWAS <- modify.data.res$geno.GWAS
ZETA <- modify.data.res$ZETA
### View each data for RAINBOWR
See(pheno.GWAS)
See(geno.GWAS)
str(ZETA)
### Perform two step SNP-set GWAS (single-snp GWAS -> SNP-set GWAS for significant markers)
twostep.SNP_set.res <- RGWAS.twostep(pheno = pheno.GWAS, geno = geno.GWAS, ZETA = ZETA,
kernel.percent = 0.2, n.PC = 4, test.method.2 = "LR",
kernel.method = "linear", gene.set = NULL,
test.effect.2 = "additive", window.size.half = 3,
window.slide = 2, package.MM = "gaston",
parallel.method = "mclapply",
skip.check = TRUE, n.core = 2)
See(twostep.SNP_set.res$D)
### Column 4 contains -log10(p) values for markers with the first method (single-SNP GWAS)
### Column 5 contains -log10(p) values for markers with the second method (SNP-set GWAS)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.