#' Obtain mouse bulk expression data of sorted cell populations (RNA-seq)
#'
#' Download and cache the normalized expression values of 358 bulk RNA-seq samples
#' of sorted cell populations that can be found at GEO.
#'
#' @inheritParams HumanPrimaryCellAtlasData
#'
#' @details This dataset was contributed by the Benayoun Lab that identified,
#' downloaded and processed data sets on GEO that corresponded to sorted cell
#' types (Benayoun et al., 2019).
#'
#' The dataset contains 358 mouse RNA-seq samples annotated to 18 main cell types (\code{"label.main"}):
#' \itemize{
#' \item Adipocytes
#' \item Astrocytes
#' \item B cells
#' \item Cardiomyocytes
#' \item Dendritic cells
#' \item Endothelial cells
#' \item Epithelial cells
#' \item Erythrocytes
#' \item Fibroblasts
#' \item Granulocytes
#' \item Hepatocytes
#' \item Macrophages
#' \item Microglia
#' \item Monocytes
#' \item Neurons
#' \item NK cells
#' \item Oligodendrocytes
#' \item T cells
#' }
#' These are split further into 28 subtypes (\code{"label.fine"}).
#' The subtypes have also been mapped to the Cell Ontology (\code{"label.ont"},
#' if \code{cell.ont} is not \code{"none"}), which can be used for further programmatic
#' queries.
#'
#' @return A \linkS4class{SummarizedExperiment} object with a \code{"logcounts"} assay
#' containing the log-normalized expression values, along with cell type labels in the
#' \code{\link{colData}}.
#'
#' @author Friederike Dündar
#'
#' @references
#' Benayoun B et al. (2019).
#' Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses.
#' \emph{Genome Res.} 29, 697-709.
#'
#' Code at \url{https://github.com/BenayounLaboratory/Mouse_Aging_Epigenomics_2018/tree/master/FigureS7_CIBERSORT/RNAseq_datasets_for_Deconvolution/2017-01-18}
#'
#' @examples
#' ref.se <- MouseRNAseqData()
#'
#' @export
MouseRNAseqData <- function(ensembl=FALSE, cell.ont=c("all", "nonna", "none"), legacy=FALSE) {
cell.ont <- match.arg(cell.ont)
if (!legacy && cell.ont == "all") {
se <- fetchReference("mouse_rnaseq", "2024-02-26", realize.assays=TRUE)
} else {
version <- "1.0.0"
se <- .create_se("mouse.rnaseq", version,
assays="logcounts", rm.NA = "none",
has.rowdata = FALSE, has.coldata = TRUE)
se <- .add_ontology(se, "mouse_rnaseq", cell.ont)
}
.convert_to_ensembl(se, "Mm", ensembl)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.