test_that("Testing npglm", {
# set.seed(1500)
data_list <- sim.CATE(n = 150, p = 2)
# Confounders
W <- data_list$W
# Binary treatment
A <- data_list$A
# Outcome (binary in this case)
Y <- data_list$Y
data <- data_list$data
trueCATE <- data_list$beta_CATE
task <- sl3_Task$new(data, c("W1", "W2", "A"), "Y")
# True treatment effect of data (is constant)
print(trueCATE)
# Let's learn it using semiparametric methods.
# Lets specify a constant model for the CATE
formula_CATE <- ~1
# This will take a few seconds learning_method = HAL is a regularized sparse/smoothness adaptive regression spline algorithm. To make it faster change: learning_method or max_degree_Y0W or num_knots_Y0W or parallel.
#
data
causal_fit <- npglm(formula = formula_CATE, data = data, W = W, A = A, Y = Y, estimand = "CATE", learning_method = "glmnet")
# We got pretty close!
coefs <- causal_fit$coefs
# The intercept model is actually a nonparametric estimate of the ATE
summary(causal_fit)
set.seed(1500)
data_list <- sim.CATE(n = 150, p = 2)
# Confounders
W <- data_list$W
# Binary treatment
A <- data_list$A
# Outcome (binary in this case)
Y <- data_list$Y
data <- data_list$data
trueCATE <- data_list$beta_CATE
# True treatment effect of data (is constant)
print(trueCATE)
# Let's learn it using semiparametric methods.
# Lets specify a constant model for the CATE
formula_TSM <- ~1
# This will take a few seconds learning_method = HAL is a regularized sparse/smoothness adaptive regression spline algorithm. To make it faster change: learning_method or max_degree_Y0W or num_knots_Y0W or parallel.
#
causal_fit <- npglm(formula = formula_TSM, data = data, W = W, A = A, Y = Y, estimand = "TSM", learning_method = "xgboost")
# We got pretty close!
coefs <- causal_fit$coefs
# The intercept model is actually a nonparametric estimate of the ATE
summary(causal_fit)
set.seed(1500)
data_list <- sim.CATE(n = 150, p = 2)
# Confounders
W <- data_list$W
# Binary treatment
A <- data_list$A
# Outcome (binary in this case)
Y <- data_list$Y
data <- data_list$data
trueCATE <- data_list$beta_CATE
# True treatment effect of data (is constant)
print(trueCATE)
# Let's learn it using semiparametric methods.
# Lets specify a constant model for the CATE
formula_CATE <- ~1
# This will take a few seconds learning_method = HAL is a regularized sparse/smoothness adaptive regression spline algorithm. To make it faster change: learning_method or max_degree_Y0W or num_knots_Y0W or parallel.
#
causal_fit <- npglm(formula = formula_CATE, data = data, W = W, A = A, Y = Y, estimand = "CATT", learning_method = "HAL")
# We got pretty close!
coefs <- causal_fit$coefs
# The intercept model is actually a nonparametric estimate of the ATT
summary(causal_fit)
set.seed(1500)
data_list <- sim.OR(n = 150, p = 2)
# Confounders
W <- data_list$W
# Binary treatment
A <- data_list$A
# Outcome (binary in this case)
Y <- data_list$Y
data <- data_list$data
trueCATE <- data_list$beta_CATE
# True treatment effect of data (is constant)
print(trueCATE)
# Let's learn it using semiparametric methods.
# Lets specify a constant model for the CATE
formula_CATE <- ~1
# This will take a few seconds learning_method = HAL is a regularized sparse/smoothness adaptive regression spline algorithm. To make it faster change: learning_method or max_degree_Y0W or num_knots_Y0W or parallel.
#
causal_fit <- npglm(formula = formula_CATE, data = data, W = W, A = A, Y = Y, estimand = "OR", learning_method = "glmnet")
# We got pretty close!
coefs <- causal_fit$coefs
# The intercept model can be interpreted as a population-average of the conditional odds ratio.
summary(causal_fit)
set.seed(1500)
data_list <- sim.RR(n = 150, p = 2)
# Confounders
W <- data_list$W
# Binary treatment
A <- data_list$A
# Outcome (binary in this case)
Y <- data_list$Y
data <- data_list$data
beta_logRR <- data_list$beta_logRR
# True treatment effect of data (is constant)
print(beta_logRR)
# Let's learn it using semiparametric methods.
# Lets specify a constant model for the CATE
formula_RR <- ~1
# This will take a few seconds learning_method = HAL is a regularized sparse/smoothness adaptive regression spline algorithm. To make it faster change: learning_method or max_degree_Y0W or num_knots_Y0W or parallel.
#
causal_fit <- npglm(formula = formula_RR, data = data, W = W, A = A, Y = Y, estimand = "RR", learning_method = "glm")
# We got pretty close!
coefs <- causal_fit$coefs
# The intercept model can be interpreted as a population-average of the conditional odds ratio.
summary(causal_fit)
expect_equal(T, T)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.