spCATE | R Documentation |
Semiparametric targeted conditional average treatment effect estimation. CATE(W) := E[Y|A=1,W] - E[Y|A=0,W]
spCATE( formula_CATE = ~1, W, A, Y, family_CATE = gaussian(), sl3_Lrnr_A = NULL, sl3_Lrnr_Y = NULL, weights = NULL, smoothness_order_Y0W = 1, max_degree_Y0W = 2, num_knots_Y0W = c(15, 5), fit_control = list() )
formula_CATE |
R-formula object specifying model for CATE |
W |
A matrix of baseline covariates to condition on. |
A |
A binary treatment assignment vector |
Y |
An outcome variable (continuous or binary) |
family_CATE |
A R-family object specifying the link function for the CATE |
sl3_Lrnr_A |
An optional sl3-Learner object to estimate P(A=1|W) |
sl3_Lrnr_Y |
An optional sl3-Learner object to estimate nuisance conditional means E[Y|A=0,W] and E[Y|A=1,W] |
weights |
A vector of optional weights. |
smoothness_order_Y0W |
Specification for default HAL learner (used if sl3 Learners not given). See spOR for use. |
max_degree_Y0W |
Specification for default HAL learner (used if sl3 Learners not given). See spOR for use. |
num_knots_Y0W |
Specification for default HAL learner (used if sl3 Learners not given). See spOR for use. |
fit_control |
Specification for default HAL learner (used if sl3 Learners not given). See spOR for use. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.