spRR | R Documentation |
Semiparametric targeted conditional relative risk/treatment effect using machine-learning RR(W) := E[Y|A=1/W] / E[Y|A=0,W]
spRR( formula_logRR = ~1, W, A, Y, family_RR = gaussian(), sl3_Lrnr_A = NULL, sl3_Lrnr_Y = NULL, weights = NULL, smoothness_order = 1, max_degree = 2, num_knots = c(15, 5), fit_control = list() )
formula_logRR |
R-formula object specifying model for log relative risk |
W |
A matrix of baseline covariates to condition on. |
A |
A binary treatment assignment vector |
Y |
A nonnegative outcome variable. Can be binary, a count, or a continuous nonnegative variable. |
family_RR |
A R-family object specifying the link function for the log relative risk (gaussian/identity implies formula_logRR is directly modelling the log RR) |
sl3_Lrnr_A |
An optional sl3-Learner object to estimate P(A=1|W) |
sl3_Lrnr_Y |
An optional sl3-Learner object to estimate nuisance conditional means E[Y|A=0,W] and E[Y|A=1,W] |
weights |
A vector of optional weights. |
smoothness_order |
Specification for default HAL learner (used if sl3 Learners not given). See spOR for use. |
max_degree |
Specification for default HAL learner (used if sl3 Learners not given). See spOR for use. |
num_knots |
Specification for default HAL learner (used if sl3 Learners not given). See spOR for use. |
fit_control |
Specification for default HAL learner (used if sl3 Learners not given). See spOR for use. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.