spRR: Semiparametric targeted conditional relative risk/treatment...

View source: R/spRR.R

spRRR Documentation

Semiparametric targeted conditional relative risk/treatment effect using machine-learning RR(W) := E[Y|A=1/W] / E[Y|A=0,W]

Description

Semiparametric targeted conditional relative risk/treatment effect using machine-learning RR(W) := E[Y|A=1/W] / E[Y|A=0,W]

Usage

spRR(
  formula_logRR = ~1,
  W,
  A,
  Y,
  family_RR = gaussian(),
  sl3_Lrnr_A = NULL,
  sl3_Lrnr_Y = NULL,
  weights = NULL,
  smoothness_order = 1,
  max_degree = 2,
  num_knots = c(15, 5),
  fit_control = list()
)

Arguments

formula_logRR

R-formula object specifying model for log relative risk

W

A matrix of baseline covariates to condition on.

A

A binary treatment assignment vector

Y

A nonnegative outcome variable. Can be binary, a count, or a continuous nonnegative variable.

family_RR

A R-family object specifying the link function for the log relative risk (gaussian/identity implies formula_logRR is directly modelling the log RR)

sl3_Lrnr_A

An optional sl3-Learner object to estimate P(A=1|W)

sl3_Lrnr_Y

An optional sl3-Learner object to estimate nuisance conditional means E[Y|A=0,W] and E[Y|A=1,W]

weights

A vector of optional weights.

smoothness_order

Specification for default HAL learner (used if sl3 Learners not given). See spOR for use.

max_degree

Specification for default HAL learner (used if sl3 Learners not given). See spOR for use.

num_knots

Specification for default HAL learner (used if sl3 Learners not given). See spOR for use.

fit_control

Specification for default HAL learner (used if sl3 Learners not given). See spOR for use.


Larsvanderlaan/npOddsRatio documentation built on May 3, 2022, 12:05 p.m.