Description Usage Arguments Value Author(s) References Examples
This function computes the normalization constant of the Riemann-Gauss distribution with simulations.
1 |
eta |
a vector of numeric values (or a single real value) used to initialize the simulation. |
n_channels |
a real number indicating the number of channels used in the EEG recordings. |
R |
Number of simulations. |
It returns a numeric vector (if the input eta
was a vector, a number if eta
was a real number) with the estimate of the normalization constant.
Laura Masiero, email: laura.masiero.10@gmail.com
Said, Salem, Lionel Bombrun, Yannick Berthoumieu e Jonathan Manton (2015). "Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices". In: arXiv: 1507 . 01760. url: http://arxiv.org/abs/1507.01760.
1 2 3 4 5 6 | values <- seq(1,2000)^2 #zeta(eta) simulation for a large sample
eta_values <- -10^6/values
zeta <- sapply(eta_values,zeta_est,n_channels=16,10000)
summary(log(zeta[3:2000]))
psi_smooth <- smooth.spline(eta_values[3:2000],log(zeta)[3:2000],nknots=1800) # function smoothing
logzetaprime <- predict(psi_smooth,der=1) # first derivative of psi
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.