loss_LL_xgb: Loglikelihood Error (xgboost function)

Description Usage Arguments Details Value

Description

This function computes for xgboost's obj function the Loglikelihood Error loss (logloss) gradient and hessian per value provided preds and dtrain.

Usage

1
loss_LL_xgb(preds, dtrain)

Arguments

preds

The predictions.

dtrain

The xgboost model.

Details

Loss Formula : - (y_true * log(y_pred) + (1 - y_true) * log(1 - y_pred))

Gradient Formula : (1 - y_true)/(1 - y_pred) - y_true/y_pred

Hessian Formula : (1 - y_true)/((1 - y_pred) * (1 - y_pred)) + y_true/(y_pred * y_pred)

Value

The gradient and the hessian of the Loglikelihood Error per value in a list.


Laurae2/Laurae documentation built on May 8, 2019, 7:59 p.m.