Description Usage Arguments Details Value
This function computes the Mean Cubic Error loss (MCE) per value provided preds
and labels
.
1 | loss_MCE(y_pred, y_true)
|
y_pred |
The |
y_true |
The |
Supposing: x = preds - labels
Loss Formula : abs(x^3)
Gradient Formula : 3 * (x * abs(x))
Hessian Formula : (6 * x * x) / abs(x)
The Cubic Error per value.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.