loss_MCE_hess: Mean Cubic Error (hessian function)

Description Usage Arguments Details Value

Description

This function computes the Mean Cubic Error loss (MCE) hessian per value provided preds and labels.

Usage

1
loss_MCE_hess(y_pred, y_true)

Arguments

y_pred

The predictions.

y_true

The labels.

Details

Supposing: x = preds - labels

Loss Formula : abs(x^3)

Gradient Formula : 3 * (x * abs(x))

Hessian Formula : (6 * x * x) / abs(x)

Value

The hessian of the Cubic Error per value.


Laurae2/Laurae documentation built on May 8, 2019, 7:59 p.m.