loss_MCE_math: Mean Cubic Error (math function)

Description Usage Arguments Details Value Examples

Description

This function computes the Mean Cubic Error loss (MCE) per value provided x (preds - labels).

Usage

1

Arguments

x

The predictions.

y

The labels.

Details

Supposing: x = preds - labels

Loss Formula : abs(x^3)

Gradient Formula : 3 * (x * abs(x))

Hessian Formula : (6 * x * x) / abs(x)

Value

The Cubic Error per value.

Examples

1
2
3
4
## Not run: 
SymbolicLoss(fc = loss_MCE_math)

## End(Not run)

Laurae2/Laurae documentation built on May 8, 2019, 7:59 p.m.