Description Usage Arguments Details Value Examples
This function computes the Mean Cubic Error loss (MCE) per value provided x
(preds - labels).
1 | loss_MCE_math(x, y)
|
x |
The |
y |
The |
Supposing: x = preds - labels
Loss Formula : abs(x^3)
Gradient Formula : 3 * (x * abs(x))
Hessian Formula : (6 * x * x) / abs(x)
The Cubic Error per value.
1 2 3 4 | ## Not run:
SymbolicLoss(fc = loss_MCE_math)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.