loss_MSE: Mean Squared Error (computation function)

Description Usage Arguments Details Value

Description

This function computes the Mean Squared Error loss (MSE) per value provided preds and labels.

Usage

1
loss_MSE(y_pred, y_true)

Arguments

y_pred

The predictions.

y_true

The labels.

Details

Supposing: x = preds - labels

Loss Formula : x^2

Gradient Formula : 2 * x

Hessian Formula : 2

Value

The Squared Error per value.


Laurae2/Laurae documentation built on May 8, 2019, 7:59 p.m.