Description Usage Arguments Value Examples
This function predicts from data using a trained Extravagenza machine learning model. This does not work on multiclass problems.
1 | pred.Lextravagenza(model, data, nrounds = model$best_iter)
|
model |
Type: list from |
data |
Type: xgb.DMatrix. The data to predict on. |
nrounds |
Type: integer. The number of boosting iterations to predict from. Defaults to |
A prediction vector.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | ## Not run:
library(Laurae)
library(xgboost)
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
dtrain <- xgb.DMatrix(agaricus.train$data[1:5000, ], label = agaricus.train$label[1:5000])
dval <- xgb.DMatrix(agaricus.train$data[5001:6513, ], label = agaricus.train$label[5001:6513])
dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
Lex_model <- Lextravagenza(train = dtrain, # Train data
valid = dval, # Validation data = depth tuner
test = dtest, # Test data = early stopper
maximize = FALSE, # Not maximizing RMSE
personal_rounds = 50, # Boosting for 50 iterations
personal_depth = 1:8, # Dynamic depth between 1 and 8
personal_eta = 0.40, # Shrinkage of boosting to 0.40
auto_stop = 5, # Early stopping of 5 iterations
base_margin = 0.5, # Start with 0.5 probabilities
seed = 0, # Random seed
nthread = 1, # 1 thread for training
eta = 0.40, # xgboost shrinkage of 0.40 (avoid fast overfit)
booster = "gbtree", # train trees, can't work with GLM
objective = "binary:logistic", # classification, binary
eval_metric = "rmse" # RMSE metric to optimize
)
str(Lex_model, max.level = 1) # Get list of the model structure
predictedValues <- pred.Lextravagenza(Lex_model, dtest, nrounds = Lex_model$best_iter)
all.equal(sqrt(mean((predictedValues - agaricus.test$label)^2)),
Lex_model$test[Lex_model$best_iter])
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.