knitr::opts_chunk$set(error=FALSE, warning=FALSE, message=FALSE)
library(SummarizedExperiment) library(testthat)
A large number of Bioconductor packages contain extensions of the
standard SummarizedExperiment
class from the
SummarizedExperiment package. This allows developers to take
advantage of the power of the SummarizedExperiment
representation
for synchronising data and metadata, while still accommodating
specialized data structures for particular scientific applications.
This document is intended to provide a developer-level "best
practices" reference for the creation of these derived classes.
To introduce various concepts, we will start off with a simple derived
class that does not add any new slots. This is occasionally useful
when additional constraints need to be placed on the derived class.
In this example, we will assume that we want our class to minimally
hold a "counts"
assay that contains non-negative
values^[For simplicity's sake, we won't worry about enforcing integer type, as fractional values are possible, e.g., when dealing with expected counts.].
We name our new class CountSE
and define it using the setClass
function from the methods package, as is conventionally done for all
S4 classes. We use Roxygen's #'
tags to trigger the generation of
import/export statements in the NAMESPACE
of our package.
#' @export #' @import methods #' @importClassesFrom SummarizedExperiment SummarizedExperiment .CountSE <- setClass("CountSE", contains="SummarizedExperiment")
We define a constructor that accepts a count matrix to create a
CountSE
object. We use ...
to pass further arguments to the
SummarizedExperiment
constructor, which allows us to avoid
re-specifying all its arguments.
#' @export #' @importFrom SummarizedExperiment SummarizedExperiment CountSE <- function(counts, ...) { se <- SummarizedExperiment(list(counts=counts), ...) .CountSE(se) }
We define a validity method that enforces the constraints that we
described earlier. This is done by defining a validity function using
setValidity2
from the S4Vectors
package^[This allows us to turn off the validity checks in internal functions where intermediate objects may not be valid within the scope of the function.].
Returning a string indicates that there is a problem and triggers an
error in the R session.
setValidity2("CountSE", function(object) { msg <- NULL if (assayNames(object)[1] != "counts") { msg <- c(msg, "'counts' must be first assay") } if (min(assay(object)) < 0) { msg <- c(msg, "negative values in 'counts'") } if (is.null(msg)) { TRUE } else msg })
The constructor yields the expected output when counts are provided:
CountSE(matrix(rpois(100, lambda=1), ncol=5))
... and an (expected) error otherwise:
CountSE(matrix(rnorm(100), ncol=5))
A generic is a group of functions with the same name that operate on different classes. Upon calling the generic on an object, the S4 dispatch system will choose the most appropriate function to use based on the object class. This allows users and developers to write code that is agnostic to the type of input class.
Let's say that it is of particular scientific interest to obtain the
counts with a flipped sign. We observe that there are no existing
generics that do this task, e.g., in BiocGenerics or
S4Vectors^[If you have an idea for a generally applicable generic that is not yet available, please contact the Bioconductor core team.].
Instead, we define a new generic negcounts
:
#' @export setGeneric("negcounts", function(x, ...) standardGeneric("negcounts"))
We then define a specific method for our CountSE
class^[The ...
in the generic function definition means that custom arguments like withDimnames=
can be provided for specific methods, if necessary.]:
#' @export #' @importFrom SummarizedExperiment assay setMethod("negcounts", "CountSE", function(x, withDimnames=TRUE) { -assay(x, withDimnames=withDimnames) })
If any other developers need to compute negative counts for their own
classes, they can simply use the negcounts
generic defined in our
package.
It is convention to put all class definitions (i.e., the setClass
statement) in a file named AllClasses.R
, all new generic definitions
in a file named AllGenerics.R
, and all method definitions in files
that are alphanumerically ordered below the first two. This is
because R collates files by alphanumeric order when building a
package. It is critical that the collation (and definition) of the
classes and generics occurs before that of the corresponding
methods, otherwise errors will occur. If alphanumeric ordering is
inappropriate, developers can manually specify the collation order
using Collate:
in the DESCRIPTION
file - see
Writing R Extensions for more details.
In practice, most derived classes will need to store application-specific data structures. For the rest of this document, we will be considering the derivation of a class with custom slots to hold such structures. First, we consider 1D data structures:
rowVec
: 1:1 mapping from each value to a row of the
SummarizedExperiment
.colVec
: 1:1 mapping from each value to a column of the
SummarizedExperiment
.Any 1D structure can be used if it supports length
, c
,
[
and [<-
. For simplicity, we will use integer vectors for the *.vec
slots.
We also consider some 2D data structures:
rowToRowMat
: 1:1 mapping from each row to a row of the
SummarizedExperiment
.colToColMat
: 1:1 mapping from each column to a column of the
SummarizedExperiment
.rowToColMat
: 1:1 mapping from each row to a column of the
SummarizedExperiment
.colToRowMat
: 1:1 mapping from each column to a row of the
SummarizedExperiment
.Any 2D structure can be used if it supports nrow
, ncol
, cbind
, rbind
,
[
and [<-
. For simplicity, we will use (numeric) matrices for the *.mat
slots.
Definition of the class is achieved using setClass
, using the slots=
argument to specify the new custom slots^[It does no harm to repeat the Roxygen tags, which explicitly specifies the imports required for each class and function.].
#' @export #' @import methods #' @importClassesFrom SummarizedExperiment SummarizedExperiment .ExampleClass <- setClass("ExampleClass", slots= representation( rowVec="integer", colVec="integer", rowToRowMat="matrix", colToColMat="matrix", rowToColMat="matrix", colToRowMat="matrix" ), contains="SummarizedExperiment" )
The constructor should provide some arguments for setting the new
slots in the derived class definition. The default values should be
set such that calling the constructor without any arguments returns a
valid ExampleClass
object.
#' @export #' @importFrom SummarizedExperiment SummarizedExperiment ExampleClass <- function( rowVec=integer(0), colVec=integer(0), rowToRowMat=matrix(0,0,0), colToColMat=matrix(0,0,0), rowToColMat=matrix(0,0,0), colToRowMat=matrix(0,0,0), ...) { se <- SummarizedExperiment(...) .ExampleClass(se, rowVec=rowVec, colVec=colVec, rowToRowMat=rowToRowMat, colToColMat=colToColMat, rowToColMat=rowToColMat, colToRowMat=colToRowMat) }
We define some getter generics for the custom slots containing the 1D structures.
#' @export setGeneric("rowVec", function(x, ...) standardGeneric("rowVec")) #' @export setGeneric("colVec", function(x, ...) standardGeneric("colVec"))
We then define the class-specific methods for these generics. Note
the withDimnames=TRUE
argument, which enforces consistency between
the names of the extracted object and the original
SummarizedExperiment
. It is possible to turn this off for greater
efficiency, e.g., for internal usage where names are not necessary.
#' @export setMethod("rowVec", "ExampleClass", function(x, withDimnames=TRUE) { out <- x@rowVec if (withDimnames) names(out) <- rownames(x) out }) #' @export setMethod("colVec", "ExampleClass", function(x, withDimnames=TRUE) { out <- x@colVec if (withDimnames) names(out) <- colnames(x) out })
We repeat this process for the 2D structures.
#' @export setGeneric("rowToRowMat", function(x, ...) standardGeneric("rowToRowMat")) #' @export setGeneric("colToColMat", function(x, ...) standardGeneric("colToColMat")) #' @export setGeneric("rowToColMat", function(x, ...) standardGeneric("rowToColMat")) #' @export setGeneric("colToRowMat", function(x, ...) standardGeneric("colToRowMat"))
Again, we define class-specific methods for these generics.
#' @export setMethod("rowToRowMat", "ExampleClass", function(x, withDimnames=TRUE) { out <- x@rowToRowMat if (withDimnames) rownames(out) <- rownames(x) out }) #' @export setMethod("colToColMat", "ExampleClass", function(x, withDimnames=TRUE) { out <- x@colToColMat if (withDimnames) colnames(out) <- colnames(x) out }) #' @export setMethod("rowToColMat", "ExampleClass", function(x, withDimnames=TRUE) { out <- x@rowToColMat if (withDimnames) rownames(out) <- colnames(x) out }) #' @export setMethod("colToRowMat", "ExampleClass", function(x, withDimnames=TRUE) { out <- x@colToRowMat if (withDimnames) colnames(out) <- rownames(x) out })
SummarizedExperiment
slotsThe getter methods defined in SummarizedExperiment can be directly
used to retrieve data from slots in the base class. These should
generally not require any re-defining for a derived class. However,
if it is necessary, the methods should use callNextMethod
internally. This will call the method for the base
SummarizedExperiment
class, the output of which can be modified as
required.
#' @export #' @importMethodsFrom SummarizedExperiment rowData setMethod("rowData", "ExampleClass", function(x, ...) { out <- callNextMethod() # Do something extra here. out$extra <- runif(nrow(out)) # Returning the rowData object. out })
We use setValidity2
to define a validity function for
ExampleClass
. We use the previously defined getter functions to
retrieve the slot values rather than using @
. This is generally a
good idea to keep the interface separate from the
implementation^[This protects against changes to the slot names, and simplifies development when the storage mode differs from the conceptual meaning of the data, e.g., for efficiency purposes.].
We also set withDimnames=FALSE
in our getter calls, as consistent
naming is not necessary for internal functions.
#' @importFrom BiocGenerics NCOL NROW setValidity2("ExampleClass", function(object) { NR <- NROW(object) NC <- NCOL(object) msg <- NULL # 1D if (length(rowVec(object, withDimnames=FALSE)) != NR) { msg <- c(msg, "'rowVec' should have length equal to the number of rows") } if (length(colVec(object, withDimnames=FALSE)) != NC) { msg <- c( msg, "'colVec' should have length equal to the number of columns" ) } # 2D if (NROW(rowToRowMat(object, withDimnames=FALSE)) != NR) { msg <- c( msg, "'nrow(rowToRowMat)' should be equal to the number of rows" ) } if (NCOL(colToColMat(object, withDimnames=FALSE)) != NC) { msg <- c( msg, "'ncol(colToColMat)' should be equal to the number of columns" ) } if (NROW(rowToColMat(object, withDimnames=FALSE)) != NC) { msg <- c( msg, "'nrow(rowToColMat)' should be equal to the number of columns" ) } if (NCOL(colToRowMat(object, withDimnames=FALSE)) != NR) { msg <- c( msg, "'ncol(colToRowMat)' should be equal to the number of rows" ) } if (length(msg)) { msg } else TRUE })
We use the NCOL
and NROW
methods from BiocGenerics as these
support various Bioconductor objects, whereas the base methods do not.
show
methodThe default show
method will only display information about the
SummarizedExperiment
slots. We can augment it to display some
relevant aspects of the custom slots. This is done by calling the
base show
method before printing additional fields as necessary.
#' @export #' @importMethodsFrom SummarizedExperiment show setMethod("show", "ExampleClass", function(object) { callNextMethod() cat( "rowToRowMat has ", ncol(rowToRowMat(object)), " columns\n", "colToColMat has ", nrow(colToColMat(object)), " rows\n", "rowToColMat has ", ncol(rowToRowMat(object)), " columns\n", "colToRowMat has ", ncol(rowToRowMat(object)), " rows\n", sep="" ) })
We define some setter methods for the custom slots containing the 1D structures. Again, this usually requires the creation of new generics.
#' @export setGeneric("rowVec<-", function(x, ..., value) standardGeneric("rowVec<-")) #' @export setGeneric("colVec<-", function(x, ..., value) standardGeneric("colVec<-"))
We define the class-specific methods for these generics. Note that
use of validObject
to ensure that the assigned input is still valid.
#' @export setReplaceMethod("rowVec", "ExampleClass", function(x, value) { x@rowVec <- value validObject(x) x }) #' @export setReplaceMethod("colVec", "ExampleClass", function(x, value) { x@colVec <- value validObject(x) x })
We repeat this process for the 2D structures.
#' @export setGeneric("rowToRowMat<-", function(x, ..., value) standardGeneric("rowToRowMat<-") ) #' @export setGeneric("colToColMat<-", function(x, ..., value) standardGeneric("colToColMat<-") ) #' @export setGeneric("rowToColMat<-", function(x, ..., value) standardGeneric("rowToColMat<-") ) #' @export setGeneric("colToRowMat<-", function(x, ..., value) standardGeneric("colToRowMat<-") )
Again, we define class-specific methods for these generics.
#' @export setReplaceMethod("rowToRowMat", "ExampleClass", function(x, value) { x@rowToRowMat <- value validObject(x) x }) #' @export setReplaceMethod("colToColMat", "ExampleClass", function(x, value) { x@colToColMat <- value validObject(x) x }) #' @export setReplaceMethod("rowToColMat", "ExampleClass", function(x, value) { x@rowToColMat <- value validObject(x) x }) #' @export setReplaceMethod("colToRowMat", "ExampleClass", function(x, value) { x@colToRowMat <- value validObject(x) x })
SummarizedExperiment
slotsAgain, we can use the setter methods defined in
SummarizedExperiment to modify slots in the base class. These
should generally not require any re-defining. However, if it is
necessary, the methods should use callNextMethod
internally:
#' @export #' @importMethodsFrom SummarizedExperiment "rowData<-" setReplaceMethod("rowData", "ExampleClass", function(x, ..., value) { y <- callNextMethod() # returns a modified ExampleClass # Do something extra here. message("hi!\n") y })
Imagine that we want to write a function that returns a modified
ExampleClass
, e.g., where the signs of the *.vec
fields are
reversed. For example, we will pretend that we want to write a
normalize
function, using the generic from BiocGenerics.
#' @export #' @importFrom BiocGenerics normalize setMethod("normalize", "ExampleClass", function(object) { # do something exciting, i.e., flip the signs new.row <- -rowVec(object, withDimnames=FALSE) new.col <- -colVec(object, withDimnames=FALSE) BiocGenerics:::replaceSlots(object, rowVec=new.row, colVec=new.col, check=FALSE) })
We use BiocGenerics:::replaceSlots
instead of the setter methods
that we defined above. This is because our setters perform validity
checks that are unnecessary if we know that the modification cannot
alter the validity of the object. The replaceSlots
function allows
us to skip these validity checks (check=FALSE
) for greater
efficiency.
A key strength of the SummarizedExperiment
class is that subsetting
is synchronized across the various (meta)data fields. This avoids
book-keeping errors and guarantees consistency throughout an
interactive analysis session. We need to ensure that the values in
our custom slots are also subsetted.
#' @export setMethod("[", "ExampleClass", function(x, i, j, drop=TRUE) { rv <- rowVec(x, withDimnames=FALSE) cv <- colVec(x, withDimnames=FALSE) rrm <- rowToRowMat(x, withDimnames=FALSE) ccm <- colToColMat(x, withDimnames=FALSE) rcm <- rowToColMat(x, withDimnames=FALSE) crm <- colToRowMat(x, withDimnames=FALSE) if (!missing(i)) { if (is.character(i)) { fmt <- paste0("<", class(x), ">[i,] index out of bounds: %s") i <- SummarizedExperiment:::.SummarizedExperiment.charbound( i, rownames(x), fmt ) } i <- as.vector(i) rv <- rv[i] rrm <- rrm[i,,drop=FALSE] crm <- crm[,i,drop=FALSE] } if (!missing(j)) { if (is.character(j)) { fmt <- paste0("<", class(x), ">[,j] index out of bounds: %s") j <- SummarizedExperiment:::.SummarizedExperiment.charbound( j, colnames(x), fmt ) } j <- as.vector(j) cv <- cv[j] ccm <- ccm[,j,drop=FALSE] rcm <- rcm[j,,drop=FALSE] } out <- callNextMethod() BiocGenerics:::replaceSlots(out, rowVec=rv, colVec=cv, rowToRowMat=rrm, colToColMat=ccm, rowToColMat=rcm, colToRowMat=crm, check=FALSE) })
Note the special code for handling character indices, and the use of
callNextMethod
to subset the base SummarizedExperiment
slots.
Subset assignment can be similarly performed, though the signature needs to be specified so that the replacement value is of the same class. This is generally necessary for sensible replacement of the custom slots.
#' @export setReplaceMethod("[", c("ExampleClass", "ANY", "ANY", "ExampleClass"), function(x, i, j, ..., value) { rv <- rowVec(x, withDimnames=FALSE) cv <- colVec(x, withDimnames=FALSE) rrm <- rowToRowMat(x, withDimnames=FALSE) ccm <- colToColMat(x, withDimnames=FALSE) rcm <- rowToColMat(x, withDimnames=FALSE) crm <- colToRowMat(x, withDimnames=FALSE) if (!missing(i)) { if (is.character(i)) { fmt <- paste0("<", class(x), ">[i,] index out of bounds: %s") i <- SummarizedExperiment:::.SummarizedExperiment.charbound( i, rownames(x), fmt ) } i <- as.vector(i) rv[i] <- rowVec(value, withDimnames=FALSE) rrm[i,] <- rowToRowMat(value, withDimnames=FALSE) crm[,i] <- colToRowMat(value, withDimnames=FALSE) } if (!missing(j)) { if (is.character(j)) { fmt <- paste0("<", class(x), ">[,j] index out of bounds: %s") j <- SummarizedExperiment:::.SummarizedExperiment.charbound( j, colnames(x), fmt ) } j <- as.vector(j) cv[j] <- colVec(value, withDimnames=FALSE) ccm[,j] <- colToColMat(value, withDimnames=FALSE) rcm[j,] <- rowToColMat(value, withDimnames=FALSE) } out <- callNextMethod() BiocGenerics:::replaceSlots(out, rowVec=rv, colVec=cv, rowToRowMat=rrm, colToColMat=ccm, rowToColMat=rcm, colToRowMat=crm, check=FALSE) })
We need to define a rbind
method for our custom class. This is done
by combining the custom per-row slots across class instances.
#' @export setMethod("rbind", "ExampleClass", function(..., deparse.level=1) { args <- list(...) all.rv <- lapply(args, rowVec, withDimnames=FALSE) all.rrm <- lapply(args, rowToRowMat, withDimnames=FALSE) all.crm <- lapply(args, colToRowMat, withDimnames=FALSE) all.rv <- do.call(c, all.rv) all.rrm <- do.call(rbind, all.rrm) all.crm <- do.call(cbind, all.crm) # Checks for identical column state. ref <- args[[1]] ref.cv <- colVec(ref, withDimnames=FALSE) ref.ccm <- colToColMat(ref, withDimnames=FALSE) ref.rcm <- rowToColMat(ref, withDimnames=FALSE) for (x in args[-1]) { if (!identical(ref.cv, colVec(x, withDimnames=FALSE)) || !identical(ref.ccm, colToColMat(x, withDimnames=FALSE)) || !identical(ref.rcm, rowToColMat(x, withDimnames=FALSE))) { stop("per-column values are not compatible") } } old.validity <- S4Vectors:::disableValidity() S4Vectors:::disableValidity(TRUE) on.exit(S4Vectors:::disableValidity(old.validity)) out <- callNextMethod() BiocGenerics:::replaceSlots(out, rowVec=all.rv, rowToRowMat=all.rrm, colToRowMat=all.crm, check=FALSE) })
We check the other per-column slots across all elements to ensure that they are the same. This protects the user against combining incompatible objects. However, depending on the application, this may not be necessary (or too costly) for all slots, in which case it can be limited to critical slots.
We also use the disableValidity
method to avoid the validity check
in the base cbind
method. This is because the object is technically
invalid when the base slots are combined but before it is updated with
the new combined values for the custom slots. The on.exit
call
ensures that the original validity setting is restored upon exit of
the function.
We similarly define a cbind
method to handle the custom slots.
#' @export setMethod("cbind", "ExampleClass", function(..., deparse.level=1) { args <- list(...) all.cv <- lapply(args, colVec, withDimnames=FALSE) all.ccm <- lapply(args, colToColMat, withDimnames=FALSE) all.rcm <- lapply(args, rowToColMat, withDimnames=FALSE) all.cv <- do.call(c, all.cv) all.ccm <- do.call(cbind, all.ccm) all.rcm <- do.call(rbind, all.rcm) # Checks for identical column state. ref <- args[[1]] ref.rv <- rowVec(ref, withDimnames=FALSE) ref.rrm <- rowToRowMat(ref, withDimnames=FALSE) ref.crm <- colToRowMat(ref, withDimnames=FALSE) for (x in args[-1]) { if (!identical(ref.rv, rowVec(x, withDimnames=FALSE)) || !identical(ref.rrm, rowToRowMat(x, withDimnames=FALSE)) || !identical(ref.crm, colToRowMat(x, withDimnames=FALSE))) { stop("per-row values are not compatible") } } old.validity <- S4Vectors:::disableValidity() S4Vectors:::disableValidity(TRUE) on.exit(S4Vectors:::disableValidity(old.validity)) out <- callNextMethod() BiocGenerics:::replaceSlots(out, colVec=all.cv, colToColMat=all.ccm, rowToColMat=all.rcm, check=FALSE) })
We test our new methods using the expect_*
functions from the
testthat package. Each function will test an expression and will
raise an error if the output is not as expected. This can be used to
construct unit tests for the tests/
subdirectory of the package.
Unit testing ensures that the methods behave as expected, especially
after any refactoring that may be performed in the future.
For testing, we will construct an instance of ExampleClass
that has
10 rows and 7 columns:
RV <- 1:10 CV <- sample(50, 7) RRM <- matrix(runif(30), nrow=10) CCM <- matrix(rnorm(14), ncol=7) RCM <- matrix(runif(21), nrow=7) CRM <- matrix(rnorm(20), ncol=10) thing <- ExampleClass(rowVec=RV, colVec=CV, rowToRowMat=RRM, colToColMat=CCM, rowToColMat=RCM, colToRowMat=CRM, assays=list(counts=matrix(rnorm(70), nrow=10)), colData=DataFrame(whee=LETTERS[1:7]), rowData=DataFrame(yay=letters[1:10]) )
We will also add some row and column names, which will come in handy later.
rownames(thing) <- paste0("FEATURE_", seq_len(nrow(thing))) colnames(thing) <- paste0("SAMPLE_", seq_len(ncol(thing))) thing
We test that the thing
object we constructed is valid:
expect_true(validObject(thing))
Another useful set of unit tests involves checking that the default constructors (internal and exported) yield valid objects:
expect_true(validObject(.ExampleClass())) # internal expect_true(validObject(ExampleClass())) # exported
We can also verify that the validity method fails on invalid objects:
expect_error(ExampleClass(rowVec=1), "rowVec") expect_error(ExampleClass(colVec=1), "colVec") expect_error(ExampleClass(rowToRowMat=rbind(1)), "rowToRowMat") expect_error(ExampleClass(colToColMat=rbind(1)), "colToColMat") expect_error(ExampleClass(rowToColMat=rbind(1)), "rowToColMat") expect_error(ExampleClass(colToRowMat=rbind(1)), "colToRowMat")
Testing the 1D getter methods:
expect_identical(names(rowVec(thing)), rownames(thing)) expect_identical(rowVec(thing, withDimnames=FALSE), RV) expect_identical(names(colVec(thing)), colnames(thing)) expect_identical(colVec(thing, withDimnames=FALSE), CV)
Testing the 2D getter methods:
expect_identical(rowToRowMat(thing, withDimnames=FALSE), RRM) expect_identical(rownames(rowToRowMat(thing)), rownames(thing)) expect_identical(colToColMat(thing, withDimnames=FALSE), CCM) expect_identical(colnames(colToColMat(thing)), colnames(thing)) expect_identical(rowToColMat(thing, withDimnames=FALSE), RCM) expect_identical(rownames(rowToColMat(thing)), colnames(thing)) expect_identical(colToRowMat(thing, withDimnames=FALSE), CRM) expect_identical(colnames(colToRowMat(thing)), rownames(thing))
Testing the custom rowData
method:
expect_true("extra" %in% colnames(rowData(thing)))
Testing the 1D setter methods:
rowVec(thing) <- 0:9 expect_equivalent(rowVec(thing), 0:9) colVec(thing) <- 7:1 expect_equivalent(colVec(thing), 7:1)
Testing the 2D setter methods:
old <- rowToRowMat(thing) rowToRowMat(thing) <- -old expect_equivalent(rowToRowMat(thing), -old) old <- colToColMat(thing) colToColMat(thing) <- 2 * old expect_equivalent(colToColMat(thing), 2 * old) old <- rowToColMat(thing) rowToColMat(thing) <- old + 1 expect_equivalent(rowToColMat(thing), old + 1) old <- colToRowMat(thing) colToRowMat(thing) <- old / 10 expect_equivalent(colToRowMat(thing), old / 10)
Testing our custom rowData<-
method:
expect_message(rowData(thing) <- 1, "hi")
We ensure that we can successfully trigger errors on the validity method:
expect_error(rowVec(thing) <- 0, "rowVec") expect_error(colVec(thing) <- 0, "colVec") expect_error(rowToRowMat(thing) <- rbind(0), "rowToRowMat") expect_error(colToColMat(thing) <- rbind(0), "colToColMat") expect_error(rowToColMat(thing) <- rbind(0), "rowToColMat") expect_error(colToRowMat(thing) <- rbind(0), "colToRowMat")
We test our new normalize
method:
modified <- normalize(thing) expect_equal(rowVec(modified), -rowVec(thing)) expect_equal(colVec(modified), -colVec(thing))
Subsetting by row:
subbyrow <- thing[1:5,] expect_identical(rowVec(subbyrow), rowVec(thing)[1:5]) expect_identical(rowToRowMat(subbyrow), rowToRowMat(thing)[1:5,]) expect_identical(colToRowMat(subbyrow), colToRowMat(thing)[,1:5]) # columns unaffected... expect_identical(colVec(subbyrow), colVec(thing)) expect_identical(colToColMat(subbyrow), colToColMat(thing)) expect_identical(rowToColMat(subbyrow), rowToColMat(thing))
Subsetting by column:
subbycol <- thing[,1:2] expect_identical(colVec(subbycol), colVec(thing)[1:2]) expect_identical(colToColMat(subbycol), colToColMat(thing)[,1:2]) expect_identical(rowToColMat(subbycol), rowToColMat(thing)[1:2,]) # rows unaffected... expect_identical(rowVec(subbycol), rowVec(thing)) expect_identical(rowToRowMat(subbycol), rowToRowMat(thing)) expect_identical(colToRowMat(subbycol), colToRowMat(thing))
Checking that subsetting to create an empty object is possible:
norow <- thing[0,] expect_true(validObject(norow)) expect_identical(nrow(norow), 0L) nocol <- thing[,0] expect_true(validObject(nocol)) expect_identical(ncol(nocol), 0L)
Subset assignment:
modified <- thing modified[1:5,1:2] <- thing[5:1,2:1] rperm <- c(5:1, 6:nrow(thing)) expect_identical(rowVec(modified), rowVec(thing)[rperm]) expect_identical(rowToRowMat(modified), rowToRowMat(thing)[rperm,]) expect_identical(colToRowMat(modified), colToRowMat(thing)[,rperm]) cperm <- c(2:1, 3:ncol(thing)) expect_identical(colVec(modified), colVec(thing)[cperm]) expect_identical(colToColMat(modified), colToColMat(thing)[,cperm]) expect_identical(rowToColMat(modified), rowToColMat(thing)[cperm,])
Checking that we obtain the same object after trivial assignment operations:
modified <- thing modified[0,] <- thing[0,] expect_equal(modified, thing) modified[1,] <- thing[1,] expect_equal(modified, thing) modified[,0] <- thing[,0] expect_equal(modified, thing) modified[,1] <- thing[,1] expect_equal(modified, thing)
We double-check that we can get an error upon invalid assignment:
expect_error(modified[1,1] <- thing[0,0], "replacement has length zero")
Combining by row:
combined <- rbind(thing, thing) rtwice <- rep(seq_len(nrow(thing)), 2) expect_identical(rowVec(combined), rowVec(thing)[rtwice]) expect_identical(rowToRowMat(combined), rowToRowMat(thing)[rtwice,]) expect_identical(colToRowMat(combined), colToRowMat(thing)[,rtwice]) # Columns are unaffected: expect_identical(colVec(combined), colVec(thing)) expect_identical(colToColMat(combined), colToColMat(thing)) expect_identical(rowToColMat(combined), rowToColMat(thing))
And combining by column. We use test_equivalent
here for
simplicity, as column names are altered to preserve uniqueness.
combined <- cbind(thing, thing) ctwice <- rep(seq_len(ncol(thing)), 2) expect_equivalent(colVec(combined), colVec(thing)[ctwice]) expect_equivalent(colToColMat(combined), colToColMat(thing)[,ctwice]) expect_equivalent(rowToColMat(combined), rowToColMat(thing)[ctwice,]) # Rows are unaffected: expect_equivalent(rowVec(combined), rowVec(thing)) expect_equivalent(rowToRowMat(combined), rowToRowMat(thing)) expect_equivalent(colToRowMat(combined), colToRowMat(thing))
Checking that we get the same object if we combine a single object or an empty object:
expect_equal(thing, rbind(thing)) expect_equal(thing, rbind(thing, thing[0,])) expect_equal(thing, cbind(thing)) expect_equal(thing, cbind(thing, thing[,0]))
And checking that the compatibility errors are properly thrown:
expect_error(rbind(thing, thing[,ncol(thing):1]), "not compatible") expect_error(cbind(thing, thing[nrow(thing):1,]), "not compatible")
We suggest creating at least two separate documentation (i.e. *.Rd
)
files. The first file would document the class and the constructor:
\name{ExampleClass class} \alias{ExampleClass-class} \alias{ExampleClass} \title{The ExampleClass class} \description{An overview of the ExampleClass class and constructor.} \usage{ ExampleClass(rowVec=integer(0), colVec=integer(0), # etc., etc., I won't write it all out here. ) } \arguments{ \item{rowVec}{An integer vector mapping to the rows, representing something important.} \item{colVec}{An integer vector mapping to the columns, representing something else that's important.} % And so on... } \details{ % Some context on why this class and its slots are necessary. The ExampleClass provides an example of how to derive from the SummarizedExperiment class. Its slots have no scientific meaning and are purely for demonstration purposes. }
The second file would document all of the individual methods:
\name{ExampleClass methods} % New generics: \alias{rowVec} \alias{rowVec,ExampleClass-method} \alias{rowVec<-} \alias{rowVec<-,ExampleClass-method} %% And so on... % Already have a generic: \alias{[,ExampleClass-method} \alias{[,ExampleClass,ANY-method} \alias{[,ExampleClass,ANY,ANY-method} \alias{rbind,ExampleClass-method} %% And so on... \title{ExampleClass methods} \description{Methods for the ExampleClass class.} \usage{ \S4method{rowVec}{ExampleClass}(x, withDimnames=FALSE) \S4method{rowVec}{ExampleClass}(x) <- value \S4method{[}{ExampleClass}(x, i, j, drop=TRUE) \S4method{rbind}{ExampleClass}(..., , i, j, drop=TRUE) %% And so on... } \arguments{ \item{x}{An ExampleClass object.} \item{withDimnames}{A logical scalar indicating whether dimension names from \code{x} should be returned.} \item{value}{ For \code{rowVec}, an integer vector of length equal to the number of rows. For \code{colVec}, an integer vector of length equal to the number of columns. } %% And so on... } \section{Accessors}{ % Add some details about accessor behaviour here. } \section{Subsetting}{ % Add some details about subsetting behaviour here. } \section{Combining}{ % Add some details about combining behaviour here. }
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.