1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | CvM.normal.regression.pvalue(w, x, neig = max(n, 400), verbose = FALSE)
CvM.gamma.regression.pvalue(
w,
x,
theta,
neig = max(n, 400),
link = "log",
verbose = FALSE
)
CvM.logistic.regression.pvalue(w, x, neig = max(n, 400), verbose = FALSE)
CvM.laplace.regression.pvalue(w, x, neig = max(400, n), verbose = FALSE)
CvM.weibull.regression.pvalue(w, x, neig = max(n, 400), verbose = FALSE)
CvM.extremevalue.regression.pvalue(w, x, neig = max(n, 400), verbose = FALSE)
CvM.exp.regression.pvalue(
w,
x,
theta,
neig = max(n, 400),
link = "log",
verbose = FALSE
)
|
w |
Cramér-von Mises statistic W^2 with a given distribution. |
x |
explanatory variables |
verbose |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.